

Computing Optimal Repairs of Quantified ABoxes w.r.t. Static \mathcal{EL} **TBoxes**

Problem Setting

- **Data:** quantified ABox (qABox) $\exists X. A$
- **Rules:** \mathcal{EL} TBox \mathcal{T}
- **Unwanted consequences:** \mathcal{EL} repair request \mathcal{R}
- A **repair** of $\exists X. \mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} is a qABox $\exists Y. \mathcal{B}$ such that
- \blacksquare $\exists X. \mathcal{A} \text{ and } \mathcal{T} \text{ entail } \exists Y. \mathcal{B}, \text{ and } \mathcal{T}$
- $\exists Y.\mathcal{B}$ and \mathcal{T} do not entail C(a) for each $C(a) \in \mathcal{R}$.
- A repair is **optimal** if it is not strictly entailed by another repair.

2 A Repair Recipe

For each unwanted consequence C(u):

- either choose a concept name $B \in Conj(C)$ and remove B(u) from \mathcal{A} ,
- or choose an existential restriction $\exists r. D \in Conj(C)$ and do the following for each $r(u, v) \in \mathcal{A}$:
- if $D \neq \top$, then recursively modify \mathcal{A} such that it does not entail D(v),
- otherwise, remove r(u, v) from \mathcal{A} .

3 Taking the TBox into Account

- In order to not lose consequences that follow from removed axioms, but that do not itself violate the repair request, we initially need to **saturate** the qABox by means of the axioms in the TBox.
- When removing an atomic unwanted consequence B(u) or $\exists r. D(u)$, it is also necessary to remove all E(u) where $E \sqsubseteq_{\mathcal{T}} B$ or $E \sqsubseteq_{\mathcal{T}} \exists r. D$, respectively. It suffices to consider concepts $E \in Sub(\mathcal{T}, \mathcal{R})$.

Technische Universität Dresden Faculty of Computer Science Institute of Theoretical Computer Science Chair of Automata Theory

4 Saturations

- The saturation of a qABox depends on the entailment relation.
- **Classical entailment** compares qABoxes w.r.t. their models.
- CQ-entailment compares qABoxes w.r.t. which Conjunctive Queries they entail. It coincides with classical entailment (for a fixed TBox!) and is NP-complete.
- To guarantee termination of saturation w.r.t. CQ-entailment, we require that the TBox is cycle-restricted. Specifically, it then terminates in exponential time.
- **IQ-entailment** compares qABoxes w.r.t. which *EL* concept assertions (Instance Queries) they entail. It can be decided in polynomial time.
- Saturation w.r.t. IQ-entailment always terminates, viz. in polynomial time.

5 Canonical Repairs

- Canonical repairs are based on the repair recipe, taking the TBox into account. To achieve **optimality**, we create enough copies of each object in the input and modify each copy in another way.
- Given a qABox, a cycle-restricted TBox, and a repair request, the set of all optimal CQ-repairs can be computed in exponential time using an NP-oracle.
- Given a qABox, a TBox, and a repair request, the set of all optimal IQ-repairs can be computed in exponential time.

6 Optimized Repairs

- **Problem:** Each canonical repair has exponential size. Thus, it is expensive or even impossible to compute canonical repairs of large ontologies.
- There are examples where an optimal repair need not be exponentially large. In these cases, the canonical repair is already equivalent to a small sub-qABox.
- We propose a rule-based approach to computing optimized repairs, which contain only relevant parts of the canonical repairs.

Franz Baader Patrick Koopmann Francesco Kriegel Adrian Nuradiansyah

Implementation and Evaluation

Prototypical implementation:

https://github.com/de-tu-dresden-inf-lat/ abox-repairs-wrt-static-tbox

Scenarios:

Evaluation corpus:

- 80 ontologies
- With up to 100,000 axioms
- Used in the 2015 OWL Reasoner Competition
- Track: OWL EL Realisation
- Cyclic ontologies ignored for CQ-experiments

References

Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, Rafael Peñaloza: **Computing Compliant Anonymisations of Quantified ABoxes w.r.t.** *EL* **Policies.** 19th International Semantic Web Conference (ISWC), Athens, Greece, November 2–6, 2020.

Franz Baader, Patrick Koopmann, Francesco Kriegel, Adrian Nuradiansyah: Computing Optimal Repairs of Quantified ABoxes w.r.t. Static \mathcal{EL} **TBoxes.** 28th International Conference on Automated Deduction (CADE), Virtual Event, July 12–15, 2021.

The 18th International Conference on Principles of Knowledge Representation and Reasoning (KR 2021) 12 November 2021

S1: repairing a single unwanted consequence for a single individual **S2:** repairing a single unwanted consequence for 10% of the individuals