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Quantified ABoxes

A quantified ABox ∃𝑋.𝒜 consists of
a finite set 𝑋 of variables and
an ℰℒ ABox𝒜, calledmatrix, in which variablesmay be used in place of individuals.

We assume every quantified ABox be in normal form,
i.e. no complex concepts occur in thematrix.

Example. ∃∅.{𝑖 ∶ (𝐴 ⊓ ∃𝑟.𝐵), 𝑗 ∶ ⊤} and ∃{𝑥}.{𝑖 ∶ 𝐴, (𝑖, 𝑥) ∶ 𝑟, 𝑥 ∶ 𝐵} are equivalent,
but only the latter is in formal form.

The semantics is defined bymodels and variable assignments:
ℐ ⊨ ∃𝑋.𝒜 iff. there is𝒵∶ 𝑋 → Dom(ℐ) such thatℐ[𝒵] ⊨ 𝒜.
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Quantified ABoxes

Over signatures consisting of constants, unary predicates, and binary predicates
only, the following are syntatic variants of each other, i.e. semantically the same:
relational structures with constants,
databases with nulls,
primitive-positive (pp) formulas in first-order logic,
conjunctive queries (CQs), and
quantified ABoxes.

We can thus reuse results for any of the above.
Most importantly: ∃𝑋.𝒜 ⊨ ∃𝑌 .ℬ iff. there is a homomorphism from ∃𝑌 .ℬ to ∃𝑋.𝒜.
Recall: a homomorphism from ∃𝑋.𝒜 to ∃𝑌 .ℬ is amapping ℎ ∶ Obj(∃𝑋.𝒜) → Obj(∃𝑌 .ℬ)
that fulfills the following conditions:
1 ℎ(𝑖) = 𝑖 for each individual 𝑖,
2 if 𝑡 ∶ 𝐴 ∈ 𝒜, then ℎ(𝑡) ∶ 𝐴 ∈ ℬ,
3 if (𝑡, 𝑢) ∶ 𝑟 ∈ 𝒜, then (ℎ(𝑡), ℎ(𝑢)) ∶ 𝑟 ∈ ℬ.
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Explaining Observations by
Abductive Differences
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Observations and Explanations

Definition. Consider two quantified ABoxes:
an observation ∃𝑋.𝒜
and a knowledge base ∃𝑌 .ℬ.

An abductive difference (or explanation) of ∃𝑋.𝒜 w.r.t. ∃𝑌 .ℬ is a quantified ABox ∃𝑍.𝒞
such that ∃𝑌 .ℬ ∪ ∃𝑍.𝒞 ⊨ ∃𝑋.𝒜.
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Example.
Observation: ∃{𝑥}.{tom ∶ Cat, (tom, 𝑥) ∶ chases, 𝑥 ∶Mouse}
Knowledge base: ∃∅.{tom ∶ Cat, jerry ∶Mouse}
Twominimal explanations: ∃{𝑥}.{(tom, 𝑥) ∶ chases, 𝑥 ∶Mouse}

and ∃∅.{(tom, jerry) ∶ chases}
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How canwe compute all minimal abductive differences?
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Lower Bound

An observation can have at least exponentiallymany explanations.

Example. For each number 𝑛 ≥ 1, consider
the observation ∃{𝑥1, … , 𝑥𝑛}.{(𝑥1, 𝑥2) ∶ 𝑟, (𝑥2, 𝑥3) ∶ 𝑟, … , (𝑥𝑛−1, 𝑥𝑛) ∶ 𝑟, 𝑥1 ∶𝐴1, … , 𝑥𝑛 ∶𝐴𝑛}
and the knowledge base ∃∅.{(𝑖, 𝑖) ∶ 𝑟, (𝑗, 𝑗) ∶ 𝑟, (𝑖, 𝑗) ∶ 𝑟, (𝑗, 𝑖) ∶ 𝑟}.

Then, in order to obtain aminimal explanation, we can choose between 𝑖 ∶𝐴ℓ and 𝑗 ∶𝐴ℓ
for each ℓ ∈ {1,… , 𝑛}, i.e. every qABox ∃∅.{𝑡1 ∶𝐴1, … , 𝑡𝑛 ∶𝐴𝑛}with 𝑡ℓ ∈ {𝑖, 𝑗} is aminimal
explanation. Thus there are at least 2𝑛 minimal explanations.
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Partial Homomorphisms

Consider an observation ∃𝑋.𝒜, a knowledge base ∃𝑌 .ℬ, and an explanation ∃𝑍.𝒞.
Then ∃𝑌 .ℬ ∪ ∃𝑍.𝒞 ⊨ ∃𝑋.𝒜
and thus there is a homomorphism ℎ from ∃𝑋.𝒜 to ∃𝑌 .ℬ ∪ ∃𝑍.𝒞.

We split ℎ into twomappings:
1 𝑝 is the part of ℎ that maps to objects of the knowledge base ∃𝑌 .ℬ,
2 𝑞 is the part of ℎ that maps to objects of the explanation ∃𝑍.𝒞.

𝑝 is a partial function fromObj(∃𝑋.𝒜) to Obj(∃𝑌 .ℬ) that pinpoints the part of the
observation that is already known.

We call 𝑝 a partial homomorphism from ∃𝑋.𝒜 to ∃𝑌 .ℬ (see paper for details).
This notion is independent from the particular explanation ∃𝑍.𝒞 and the part 𝑞.
Allminimal abductive differences can be obtained from these partial
homomorphisms.
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𝑝-Differences

For each partial homomorphism 𝑝 from the observation ∃𝑋.𝒜 to the knowledge base
∃𝑌 .ℬ, we can construct the 𝑝-difference ∃𝑋.𝒜 ⧵𝑝 ∃𝑌 .ℬ.

The 𝑝-difference consists of the observation part that is unknown according to 𝑝.

𝑝-differences are canonical:
1 𝑝 can be extended to a homomorphism from ∃𝑋.𝒜 to ∃𝑌 .ℬ ∪ (∃𝑋.𝒜 ⧵𝑝 ∃𝑌 .ℬ).

Thus, every 𝑝-difference is an abductive difference.

2 Each explanation entails some 𝑝-difference.
Thus, everyminimal explanation is equivalent to a 𝑝-difference.

Theorem. Up to equivalence, eachminimal explanation has polynomial size and the
set of all minimal explanations can be computed in exponential time.
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Outlook
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Implementation and Evaluation

There is a correspondence between
partial homomorphisms from ∃𝑋.𝒜 to ∃𝑌 .ℬ
and homomorphisms from ∃𝑋.𝒜 to an extension of ∃𝑌 .ℬ.

Thus, partial homomorphisms can be enumerated with off-the-shelf query-answering
systems.

Interesting future work:
Implementation
Evaluation with real-world datasets
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Taking Ontologies into Account

(Minimal) abductive differences can also be considered w.r.t. ontologies.
An observation can then have infinitely many non-equivalent explanations,
and their sizes are not bounded.

Example. Consider
the observation {alice ∶ Human}
and the KB consisting of the ℰℒ ABox {bob ∶ Human}
and the ℰℒ ontology {∃hasParent.Human ⊑ Human}.

Foreachnumber𝑛 > 0, theqABox∃{𝑥1, … , 𝑥𝑛}.{(alice, 𝑥1)∶hasParent, (𝑥1, 𝑥2)∶hasParent,
… , (𝑥𝑛−1, 𝑥𝑛) ∶ hasParent, (𝑥𝑛 ,bob) ∶ hasParent} is aminimal abductive difference.

Interesting future work:
Enumeration of all minimal explanations
Use of practically motivatedmetrics to restrict and compare explanations
User interaction to pinpoint one practically useful explanation
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