

Faculty of Computer Science • Institute of Theoretical Computer Science • Chair of Automata Theory

Optimal Fixed-Premise Repairs of *E***L TBoxes**

Francesco Kriegel

Funded by DFG in Project 430150274 (Repairing Description Logic Ontologies) and partially in Project 389792660 (TRR 248: Foundations of Perspicuous Software Systems).

20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023, RPR Track), 2–8 September 2023

Repairs of \mathcal{EL} **TBoxes**

- An ontology can contain axioms that are incorrect in the underlying domain, especially if
- it was constructed from incomplete data
- or using inexact methods based on machine learning.
- Such errors are detected when a reasoner generates consequences from the faulty axioms.

Repairs of \mathcal{EL} **TBoxes**

An ontology can contain axioms that are incorrect in the underlying domain, especially if

- it was constructed from incomplete data
- or using inexact methods based on machine learning.

Such errors are detected when a reasoner generates consequences from the faulty axioms.

Definition. Given an \mathcal{EL} TBox \mathcal{T} and a repair request \mathcal{P} (a finite set of concept inclusions), a **repair** of \mathcal{T} for \mathcal{P} is a TBox \mathcal{T}' such that $\mathcal{T}' \not\models C \sqsubseteq D$ for each unwanted consequence $C \sqsubseteq D$ in \mathcal{P} . \mathcal{T}' is somehow constructed from \mathcal{T} or somehow related to \mathcal{T} (to be specified). A repair is **optimal** if there is no repair that is "better" w.r.t. \mathbb{R} .

State of the Art

Classical repairs: $\mathcal{T}' \subseteq \mathcal{T}$, i.e., \mathcal{T}' is constructed from \mathcal{T} by deleting axioms.

Gentle repairs:

1 \mathcal{T}' is constructed from \mathcal{T} by weakening axioms, i.e., for each $C' \sqsubseteq D'$ in \mathcal{T}' , there is some $C \sqsubseteq D$ in \mathcal{T} such that $C \sqsubseteq D \models C' \sqsubseteq D'$.

Countermodel repairs:

2 There is a countermodel \mathcal{J} such that $\mathcal{T}' \models C \sqsubseteq D$ iff $\mathcal{T} \models C \sqsubseteq D$ and $\mathcal{J} \models C \sqsubseteq D$.

R. Reiter: A theory of diagnosis from first principles. Artif. Intell. (1987)

F. Baader, F. Kriegel, A. Nuradiansyah, R. Peñaloza: Making repairs in description logics more gentle. KR 2018 F. Kriegel: Constructing and extending description logic ontologies using methods of formal concept analysis. Doctoral thesis (2019)

Optimal Fixed-Premise Repairs of *EL* TBoxes

Francesco Kriegel (TU Dresden)

Two New Types of Repairs

Inspired by the gentle repairs w.r.t. \succ^{sub} as well as by the countermodel repairs, and in order to tackle their problems, a novel type of repairs is introduced.

Generalized-conclusion repairs (GC-repairs): Provide The term of term

Theorem. For each TBox T and each repair request P,

the set of all optimal GC-repairs can be computed in exponential time,

■ and every GC-repair is entailed by an optimal one.

F. Kriegel: Optimal Fixed-Premise Repairs of \mathcal{EL} TBoxes. KI 2022 (German Conference on AI)

Two New Types of Repairs

We introduce yet another type of repairs which can retain more consequences than GC-repairs.

Fixed-premise repairs (FP-repairs):

22 $\mathcal{T} \models \mathcal{T}'$ and for each $C' \sqsubseteq D'$ in \mathcal{T}' , there is $C \sqsubseteq D$ in \mathcal{T} such that C = C'.

Theorem. For each TBox *T* and each repair request *P*,
■ the set of all optimal FP-repairs can be computed in exponential time,
■ and every FP-repair is entailed by an optimal one.

F. Kriegel: Optimal Fixed-Premise Repairs of & C TBoxes. KI 2022 (German Conference on AI)

Computing Repairs

Canonical GC- and FP-repairs can be constructed in almost the same way:

- **1** Choose a polynomial-size **repair seed** S.
- 2 Construct the **induced countermodel** $\mathcal{J}_{\mathcal{S}}$.
- **3** For each concept inclusion $C \sqsubseteq D$ in \mathcal{T} ,
 - **GC:** generalize *D* such that the resulting concept inclusion holds in $\mathcal{J}_{\mathcal{S}}$.
 - FP: replace *D* with the most specific concept *E* for which the concept inclusion $C \sqsubseteq E$ holds in \mathcal{J}_S .

Comparison of \mathcal{EL} TBox Repair Approaches

An Example with Bikes

```
Example. We consider the \mathcal{EL} TBox
\mathcal{T}_{\mathsf{Bike}} \coloneqq \{ \mathsf{MountainBike} \sqsubseteq \mathsf{Bike}, \}
                          Bike \Box \existshasPart.SuspensionFork \Box \existsisSuitableFor.OffRoadCycling,
           SuspensionFork \square Fork,
            OffRoadCycling \Box Cycling \}
The TBox \mathcal{T}_{\text{Bike}} entails two faulty consequences
1 Bike \Box \exists hasPart.SuspensionFork
                                                         repair request \mathcal{P}_{\mathsf{Bike}}
```

An Example with Bikes: Classical Repair

Example. A classical repair of \mathcal{T}_{Bike} for \mathcal{P}_{Bike} is { MountainBike \sqsubseteq Bike, Bike \sqsubseteq \exists hasPart.SuspensionFork \sqcap \exists isSuitableFor.OffRoadCycling, SuspensionFork \sqsubseteq Fork, OffRoadCycling \sqsubseteq Cycling } An Example with Bikes: Generalized-Conclusion Repair

```
Example. An optimal GC-repair of \mathcal{T}_{Bike} for \mathcal{P}_{Bike} is

{ MountainBike \sqsubseteq Bike,

    Bike \sqsubseteq \exists hasPart.SuspensionFork \Box \exists isSuitableFor.OffRoadCycling,

    \exists hasPart. T \Box \exists isSuitableFor. T,

SuspensionFork <math>\sqsubseteq Fork,

    OffRoadCycling \sqsubseteq Cycling }

It is also a gentle repair of \mathcal{T}_{Bike} for \mathcal{P}_{Bike} w.r.t. the weakening relation \succ^{sub}.
```

An Example with Bikes: Fixed-Premise Repair

Do you have questions or comments?