

Faculty of Computer Science • Institute of Theoretical Computer Science • Chair of Automata Theory

Optimal Fixed-Premise Repairs of *E***L TBoxes**

Francesco Kriegel Funded by DFG in Project 430150274.

45th German Conference on Artificial Intelligence (KI 2022), 23 September 2022

Description Logics (DLs)

- DLs are designed for Knowledge Representation and Reasoning (KRR).
- Trade-off between representation power and reasoning costs.
- DLs provide the logical underpinning of the OWL 2 Web Ontology Language, which is a recommendation of the World Wide Web Consortium (W3C).

Examples:

- \mathcal{EL}^{++} (OWL 2 EL)
- *DL-Lite* (OWL 2 QL)
- *SROIQ* (OWL 2 DL)
- $\blacksquare \mathcal{ALC}$

F. Baader, I. Horrocks, C. Lutz, U. Sattler: An Introduction to Description Logic. Cambridge University Press (2017) F. Baader, S. Brandt, C. Lutz: Pushing the *EC* Envelope. IJCAI 2005 D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati: *DI-Lite:* tractable description logics for ontologies. AAAI 2005 I. Horrocks, O. Kutz, U. Sattler: The even more irresistible *SROTQ*. KR 2006 Y. Kazakov: *RTQ* and *SROTQ* are harder than *SHOTQ*. KR 2008 Y. Kazakov: *RTQ* and *SROTQ* are harder than *SHOTQ*. KR 2008

Ontologies

- Knowledge on a particular domain can be represented as an ontology.
- Each DL **ontology** *O* consists of axioms and is divided into
 - 1 a **TBox** T (terminology, global knowledge)
 - **2** and an **ABox** A (the data, local knowledge).

Ontologies

- Knowledge on a particular domain can be represented as an ontology.
- Each DL **ontology** *O* consists of axioms and is divided into
 - a **TBox** T (terminology, global knowledge)
 and an **ABox** A (the data, local knowledge).
- **Example (formulated in \mathcal{EL}):**
 - $\mathcal{T}\coloneqq \{ \mathsf{MountainBike}\sqsubseteq \mathsf{Bike},$

Bike $\sqsubseteq \exists$ hasPart.SuspensionFork $\sqcap \exists$ isSuitableFor.OffRoadCycling,

SuspensionFork \sqsubseteq Fork,

 $\mathsf{OffRoadCycling} \sqsubseteq \mathsf{Cycling} \quad \}$

- $\mathcal{A} \coloneqq \{ \mathsf{rides}(\mathsf{Francesco}, x), \mathsf{Bike}(x) \}$
- The TBox \mathcal{T} will be the *running example*.

Reasoning

- Reasoning is the task of deriving implicit consequences from the explicit axioms in an ontology.
- DLs have a model-theoretic semantics under open-world assumption.
- Standard reasoning task: Deciding entailment |=
- An ontology \mathcal{O} entails an axiom α , written $\mathcal{O} \models \alpha$, if each model of \mathcal{O} is a model of α .
- Decision procedures for entailment are implemented in reasoners.
 - **•** \mathcal{EL}^{++} (OWL 2 EL): *CEL / jcel, ELepHant, ELK*
 - *SROIQ* (OWL2DL): *Chainsaw, FaCT++/Jfact, HermiT, Konclude, MORe, PAGOdA, Pellet, Racer, Sequoia, TrOWL*

Y. Kazakov, M. Krötzsch, F. Simancik: The incredible ELK - from polynomial procedures to efficient reasoning with *EL* ontologies. J. Autom. Reason. (2014) A. Steigmiller, T. Liebig, B. Glimm: Konclude: system description. J. Web Semant. (2014) D. Tena Cucala, B. Cuenca Grau, I. Horrocks: Pay-as-you-go consequence-based reasoning for the description logic *SROTQ*. Artif. Intell. (2021) B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, A. Steigmiller: The OWL Reasoner Evaluation (ORE) 2015 Competition Report. J. Autom. Reason. (2017)

Repairs

■ An ontology can contain axioms that are incorrect in the underlying domain, especially if

- it was constructed from incomplete data
- or using inexact methods based on machine learning.
- Such errors are detected when a **reasoner generates faulty consequences**.
- Goal: **Repair the ontology** for these unwanted consequences.

Repairs

■ An ontology can contain axioms that are incorrect in the underlying domain, especially if

- it was constructed from incomplete data
- or using inexact methods based on machine learning.
- Such errors are detected when a reasoner generates faulty consequences.
- Goal: **Repair the ontology** for these unwanted consequences.
- My paper focuses on repairing \mathcal{EL} TBoxes.
- **Running example:** The TBox T entails two faulty consequences
 - 1 Bike 🖳 🗄 hasPart.SuspensionFork

- repair request ${\cal P}$

2 Bike $\sqsubseteq \exists$ isSuitableFor.OffRoadCycling

Related Work: Classical Repairs

- Classical Repair Approach: Delete axioms.
- Each classical repair is obtained by deleting from *T* all axioms in a hitting set of all justifications for *P*.

R. Reiter: A theory of diagnosis from first principles. Artif. Intell. (1987) R. Greiner, B. A. Smith, R. W. Wilkerson: A correction to the algorithm in Reiter's theory of diagnosis. Artif. Intell. (1989) F. Baader, R. Peñaloza, B. Suntisrivaraporn: Pinpointing in the description logic \mathcal{EL}^+ . KI 2007 F. Baader, R. Peñaloza: Automata-based axiom pinpointing. J. Autom. Reason. (2010) E. Baader, R. Peñaloza: Axiom pinpointing in general tableaux. Llog. Comput. (2010)

Optimal Fixed-Premise Repairs of \mathcal{EL} TBoxes

Francesco Kriegel (TU Dresden)

Related Work: Classical Repairs

- Classical Repair Approach: Delete axioms.
- Each classical repair is obtained by deleting from *T* all axioms in a hitting set of all justifications for *P*.
- **Running example:** A classical repair of T is
 - 🔰 MountainBike 🗔 Bike,

SuspensionFork \sqsubseteq Fork,

OffRoadCycling \sqsubseteq Cycling }

R. Reiter: A theory of diagnosis from first principles. Artif. Intell. (1987) R. Greiner, B. A. Smith, R. W. Wilkerson: A correction to the algorithm in Reiter's theory of diagnosis. Artif. Intell. (1989) F. Baader, R. Peñaloza, B. Suntisrivaraporn: Pinpointing in the description logic *EL*⁺. KI 2007 F. Baader, R. Peñaloza: Automata-based axiom pinpointing. J. Autom. Reason. (2010) E. Baader, R. Peñaloza: Axiom pinpointing in general tableaux. I. Log. Comput. (2010)

Optimal Fixed-Premise Repairs of \mathcal{EL} TBoxes

Francesco Kriegel (TU Dresden)

Related Work: Gentle Repairs

- **Gentle Repair Approach:** Weaken axioms.
- A hitting set of all justifications for P is still needed to construct a gentle repair, but now all axioms in it are weakened according to a weakening relation >.

F. Baader, F. Kriegel, A. Nuradiansyah, R. Peñaloza: **Making repairs in description logics more gentle.** KR 2018 F. Kriegel: **Navigating the** *EL* **subsumption hierarchy.** DL 2021

Optimal Fixed-Premise Repairs of \mathcal{EL} TBoxes

Francesco Kriegel (TU Dresden)

Related Work: Gentle Repairs

- **Gentle Repair Approach:** Weaken axioms.
- A hitting set of all justifications for P is still needed to construct a gentle repair, but now all axioms in it are weakened according to a weakening relation >.
- A weakening relation \succ^{sub} for \mathcal{EL} concept inclusions: $C \sqsubseteq D \succ^{\text{sub}} C' \sqsubseteq D'$ if C = C', and $\emptyset \models D \sqsubseteq D'$, and $C' \sqsubseteq D' \not\models C \sqsubseteq D$.
- Problems:
 - **1** Efficient computation of maximally strong \succ^{sub} -weakenings
 - 2 Efficient computation of one or all optimal repairs

Related Work: Countermodel Repairs

- The unwanted consequences in \mathcal{P} are entailed since no counterexamples were known during the construction of the TBox \mathcal{T} .
- A model containing such counterexamples can now be obtained from the user or be constructed automatically. The TBox is then rewritten according to the countermodel.
- Repair-by-Countermodel Approach: Axiomatize the logical intersection of the TBox and a countermodel.

F. Kriegel: Constructing and extending description logic ontologies using methods of formal concept analysis. Doctoral thesis (2019)

Related Work: Countermodel Repairs

- The unwanted consequences in \mathcal{P} are entailed since no counterexamples were known during the construction of the TBox \mathcal{T} .
- A model containing such counterexamples can now be obtained from the user or be constructed automatically. The TBox is then rewritten according to the countermodel.
- Repair-by-Countermodel Approach: Axiomatize the logical intersection of the TBox and a countermodel.
- Advantage: Axiomatization method is very precise and thus produces repairs that retain large amounts of knowledge.
- Disadvantage: Repairs are often large (and cannot be made smaller).

F. Kriegel: Constructing and extending description logic ontologies using methods of formal concept analysis. Doctoral thesis (2019)

Generalized-Conclusion Repairs

- Inspired by the gentle repairs w.r.t. >^{sub} as well as by the countermodel repairs, and in order to tackle their problems, a novel type of repairs is introduced.
- A generalized-conclusion repair (GC-repair) \mathcal{T}' of \mathcal{T} is a repair such that additionally: For each $C' \sqsubseteq D' \in \mathcal{T}'$, there is $C \sqsubseteq D \in \mathcal{T}$ such that C = C' and $\emptyset \models D \sqsubseteq D'$.

Generalized-Conclusion Repairs

- Inspired by the gentle repairs w.r.t. ≻^{sub} as well as by the countermodel repairs, and in order to tackle their problems, a novel type of repairs is introduced.
- A generalized-conclusion repair (GC-repair) \mathcal{T}' of \mathcal{T} is a repair such that additionally: For each $C' \sqsubseteq D' \in \mathcal{T}'$, there is $C \sqsubseteq D \in \mathcal{T}$ such that C = C' and $\emptyset \models D \sqsubseteq D'$.
- Canonical construction of GC-repairs:
 - **1** Choose a polynomial-size **repair seed** S.
 - 2 Construct the **induced countermodel** $\mathcal{J}_{\mathcal{S}}$.
 - **3** Replace each concept inclusion $C \sqsubseteq D$ with $C \sqsubseteq D \lor C^{\mathcal{J}_{S}\mathcal{J}_{S}}$.
- Main result: For each TBox and each repair request, the set of all optimal GC-repairs can be computed in exponential time, and every GC-repair is entailed by an optimal one.

Generalized-Conclusion Repairs

```
    Running example: An optimal GC-repair of T is
        { MountainBike ⊑ Bike,
        Bike ⊑ ∃hasPart.SuspensionFork □∃isSuitableFor.OffRoadCycling,
        ∃hasPart. □ ∃isSuitableFor. □,
        SuspensionFork ⊑ Fork,
        OffRoadCycling □ Cycling }
```

Fixed-Premise Repairs

- As seen in the last example, GC-repairs might not be satisfactory. We thus define:
- A **fixed-premise repair (FP-repair)** \mathcal{T}' of \mathcal{T} is a repair that satisfies the following additional condition: For each $C' \sqsubseteq D' \in \mathcal{T}'$, there is $C \sqsubseteq D \in \mathcal{T}$ such that C = C'.

Fixed-Premise Repairs

- As seen in the last example, GC-repairs might not be satisfactory. We thus define:
- A **fixed-premise repair (FP-repair)** \mathcal{T}' of \mathcal{T} is a repair that satisfies the following additional condition: For each $C' \sqsubseteq D' \in \mathcal{T}'$, there is $C \sqsubseteq D \in \mathcal{T}$ such that C = C'.
- FP-repairs can be computed by a little modification to the framework for GC-repairs.
- Main result: For each TBox and each repair request, the set of all optimal FP-repairs can be computed in exponential time, and every FP-repair is entailed by an optimal one.
- Contrary to GC-repairs, optimal FP-repairs might need additional expressivity. (But this is no problem!)

Fixed-Premise Repairs

```
    Running example: An optimal FP-repair of T is
        { MountainBike ⊑ Bike,
Bike □ ∃hasPart.SuspensionFork □ ∃isSuitableFor.OffRoadCycling,
Bike ⊑ <del>∃hasPart.SuspensionFork □ ∃isSuitableFor.OffRoadCycling</del>,
∃hasPart.Fork □ ∃isSuitableFor.Cycling,

    SuspensionFork ⊑ Fork,
OffRoadCycling ⊑ Cycling }
```

Introduction 0000 Related Work: Classical Repairs, Gentle Repairs, Countermodel Repairs 000 Optimal Fixed-Premise Repairs 0000 Conclusion and Outlook 🐽

Conclusion

- A novel approach to repairing *EL* TBoxes for unwanted concept inclusions has been developed.
- Two variants: GC-repairs and FP-repairs
- Each optimal repair is characterized by a polynomial-size repair seed.
- Optimal repairs can be computed in exponential time.
- Prototypical implementation: https://github.com/francesco-kriegel/ right-repairs-of-el-tboxes
- Repair seed is obtained by user interaction.

Next Steps

More expressivity:

- **•** Nominals $\{a\}$ (also adds supports for ABox axioms)
- Bottom concept ⊥
- Inverse roles r^-
- **Role inclusions** $R_1 \circ \cdots \circ R_n \sqsubseteq S$
- Support for a partitioning of the ontology into a static part and a refutable part.
- Improvement of FP-repairs by selective, automatic introduction of new premises (can currently be done manually).

Do you have questions or comments?