Optimal Fixed-Premise Repairs of \mathcal{EL} TBoxes

Francesco Kriegel
Funded by DFG in Project 430150274.

ReDLO
Repairing Description Logic Ontologies

45th German Conference on Artificial Intelligence (KI 2022),
23 September 2022
Description Logics (DLs)

- DLs are designed for **Knowledge Representation and Reasoning (KRR).**
- Trade-off between representation power and reasoning costs.
- DLs provide the logical underpinning of the **OWL 2 Web Ontology Language,** which is a recommendation of the World Wide Web Consortium (W3C).

Examples:
- \(\mathcal{EL}^{++}\) (OWL 2 EL)
- **DL-Lite** (OWL 2 QL)
- **SROIQ** (OWL 2 DL)
- **ALC**

F. Baader, S. Brandt, C. Lutz: *Pushing the \(\mathcal{EL}\) Envelope.* IJCAI 2005
Y. Kazakov: *RIQ and SROIQ are harder than SHOIQ.* KR 2008
Ontologies

- Knowledge on a particular domain can be represented as an ontology.
- Each DL **ontology** \mathcal{O} consists of axioms and is divided into
 1. a **TBox** \mathcal{T} (terminology, global knowledge)
 2. and an **ABox** \mathcal{A} (the data, local knowledge).
Ontologies

Knowledge on a particular domain can be represented as an ontology.

Each DL ontology \mathcal{O} consists of axioms and is divided into:

1. a TBox \mathcal{T} (terminology, global knowledge)
2. and an ABox \mathcal{A} (the data, local knowledge).

Example (formulated in \mathcal{EL}):

\[
\mathcal{T} := \{ \text{MountainBike} \sqsubseteq \text{Bike}, \\
\quad \text{Bike} \sqsubseteq \exists \text{hasPart}.\text{SuspensionFork} \sqcap \exists \text{isSuitableFor}.\text{OffRoadCycling}, \\
\quad \text{SuspensionFork} \sqsubseteq \text{Fork}, \\
\quad \text{OffRoadCycling} \sqsubseteq \text{Cycling} \}
\]

\[
\mathcal{A} := \{ \text{rides(Francesco, x)}, \text{Bike}(x) \}
\]

The TBox \mathcal{T} will be the running example.
Reasoning

- **Reasoning** is the task of deriving implicit consequences from the explicit axioms in an ontology.
- DLs have a **model-theoretic semantics** under open-world assumption.
- Standard reasoning task: Deciding **entailment** \(\models \)
- An ontology \(O \) entails an axiom \(\alpha \), written \(O \models \alpha \), if each model of \(O \) is a model of \(\alpha \).
- Decision procedures for entailment are implemented in **reasoners**.
 - \(\mathcal{EL}^{++} \) (OWL 2 EL): \(CEL/jcel, ELepHant, ELK \)
 - \(\mathcal{SROIQ} \) (OWL 2 DL): \(Chainsaw, FaCT++/Jfact, HermiT, Konclude, MORe, PAGOdA, Pellet, Racer, Sequoia, TrOWL \)

Repairs

- An **ontology can contain axioms that are incorrect** in the underlying domain, especially if
 - it was constructed from incomplete data
 - or using inexact methods based on machine learning.
- Such errors are detected when a **reasoner generates faulty consequences**.
- **Goal**: **Repair the ontology** for these unwanted consequences.
Repairs

- An **ontology can contain axioms that are incorrect** in the underlying domain, especially if
 - it was constructed from incomplete data
 - or using inexact methods based on machine learning.
- Such errors are detected when a **reasoner generates faulty consequences**.
- Goal: **Repair the ontology** for these unwanted consequences.
- My paper focuses on repairing \mathcal{EL} TBoxes.

Running example: The TBox T entails two faulty consequences

1. $\text{Bike} \sqsubseteq \exists \text{hasPart. SuspensionFork}$
2. $\text{Bike} \sqsubseteq \exists \text{isSuitableFor. OffRoadCycling}$

} repair request \mathcal{P}
Related Work: Classical Repairs

- **Classical Repair Approach:** Delete axioms.
- Each classical repair is obtained by deleting from T all axioms in a hitting set of all justifications for P.

F. Baader, R. Peñaloza, B. Suntisrivaraporn: *Pinpointing in the description logic $\mathcal{EL}^+*_. KI 2007
Related Work: Classical Repairs

■ **Classical Repair Approach:** Delete axioms.

■ Each classical repair is obtained by deleting from \mathcal{T} all axioms in a hitting set of all justifications for \mathcal{P}.

■ **Running example:** A classical repair of \mathcal{T} is

{ MountainBike ⊑ Bike,
 Bike ⊑ ∃hasPartSuspensionFork ⊓ ∃isSuitableForOffRoadCycling,
 SuspensionFork ⊑ Fork,
 OffRoadCycling ⊑ Cycling }
Related Work: Gentle Repairs

- **Gentle Repair Approach:** Weaken axioms.
- A hitting set of all justifications for \mathcal{P} is still needed to construct a gentle repair, but now all axioms in it are weakened according to a weakening relation \triangleright.

F. Kriegel: *Navigating the \mathcal{EL} subsumption hierarchy.* DL 2021
Related Work: Gentle Repairs

- **Gentle Repair Approach:** Weaken axioms.
- A hitting set of all justifications for \mathcal{P} is still needed to construct a gentle repair, but now all axioms in it are weakened according to a weakening relation \succ.
- A weakening relation \succ_{sub} for \mathcal{EL} concept inclusions:

 \[
 C \sqsubseteq D \succ_{\text{sub}} C' \sqsubseteq D' \text{ if } C = C', \text{ and } \emptyset \models D \sqsubseteq D', \text{ and } C' \sqsubseteq D' \not\models C \sqsubseteq D.
 \]

- **Problems:**
 1. Efficient computation of maximally strong \succ_{sub}-weakenings
 2. Efficient computation of one or all optimal repairs

F. Kriegel: *Navigating the \mathcal{EL} subsumption hierarchy*. DL 2021
Related Work: Countermodel Repairs

- The unwanted consequences in \mathcal{P} are entailed since no counterexamples were known during the construction of the TBox \mathcal{T}.
- A model containing such counterexamples can now be obtained from the user or be constructed automatically. The TBox is then rewritten according to the countermodel.
- **Repair-by-Countermodel Approach**: Axiomatize the logical intersection of the TBox and a countermodel.

Related Work: Countermodel Repairs

- The unwanted consequences in P are entailed since no counterexamples were known during the construction of the TBox \mathcal{T}.

- A model containing such counterexamples can now be obtained from the user or be constructed automatically. The TBox is then rewritten according to the countermodel.

- **Repair-by-Countermodel Approach:** Axiomatize the logical intersection of the TBox and a countermodel.

- Advantage: Axiomatization method is very precise and thus produces repairs that retain large amounts of knowledge.

- Disadvantage: Repairs are often large (and cannot be made smaller).

Generalized-Conclusion Repairs

- Inspired by the gentle repairs w.r.t. \succ_{sub} as well as by the countermodel repairs, and in order to tackle their problems, a novel type of repairs is introduced.

- A generalized-conclusion repair (GC-repair) \mathcal{T}' of \mathcal{T} is a repair such that additionally: For each $C' \sqsubseteq D' \in \mathcal{T}'$, there is $C \sqsubseteq D \in \mathcal{T}$ such that $C = C'$ and $\emptyset \models D \sqsubseteq D'$.

Canonical construction of GC-repairs:

1. Choose a polynomial-size repair seed S.
2. Construct the induced countermodel J_S.
3. Replace each concept inclusion $C \sqsubseteq D$ with $C \sqsubseteq D \vee C_{J_S}$ and $\emptyset \models D \sqsubseteq D'$.

Main result: For each TBox and each repair request, the set of all optimal GC-repairs can be computed in exponential time, and every GC-repair is entailed by an optimal one.
Generalized-Conclusion Repairs

- Inspired by the gentle repairs w.r.t. \succ^{sub} as well as by the countermodel repairs, and in order to tackle their problems, a novel type of repairs is introduced.

- A **generalized-conclusion repair (GC-repair)** T' of T is a repair such that additionally:

 For each $C' \sqsubseteq D' \in T'$, there is $C \sqsubseteq D \in T$ such that $C = C'$ and $\emptyset \models D \sqsubseteq D'$.

- Canonical construction of GC-repairs:

 1. Choose a polynomial-size repair seed S.
 2. Construct the induced countermodel J_S.
 3. Replace each concept inclusion $C \sqsubseteq D$ with $C \sqsubseteq D \lor C J_S J_S$.

- Main result: For each TBox and each repair request, the set of all optimal GC-repairs can be computed in exponential time, and every GC-repair is entailed by an optimal one.
Generalized-Conclusion Repairs

Running example: An optimal GC-repair of T is

\[
\begin{align*}
\{ & \text{MountainBike} \sqsubseteq \text{Bike}, \\
& \text{Bike} \sqsubseteq \exists\text{hasPart. SuspensionFork} \sqsubseteq \exists\text{isSuitableFor. OffRoadCycling}, \\
& \exists\text{hasPart. T} \sqcap \exists\text{isSuitableFor. T}, \\
& \text{SuspensionFork} \sqsubseteq \text{Fork}, \\
& \text{OffRoadCycling} \sqsubseteq \text{Cycling} \}
\end{align*}
\]
Fixed-Premise Repairs

- As seen in the last example, GC-repairs might not be satisfactory. We thus define:
- A **fixed-premise repair (FP-repair)** \mathcal{T}' of \mathcal{T} is a repair that satisfies the following additional condition: For each $C' \sqsubseteq D' \in \mathcal{T}'$, there is $C \sqsubseteq D \in \mathcal{T}$ such that $C = C'$.

FP-repairs can be computed by a little modification to the framework for GC-repairs. Main result: For each TBox and each repair request, the set of all optimal FP-repairs can be computed in exponential time, and every FP-repair is entailed by an optimal one. Contrary to GC-repairs, optimal FP-repairs might need additional expressivity. (But this is no problem!)
As seen in the last example, GC-repairs might not be satisfactory. We thus define:

A **fixed-premise repair (FP-repair)** T' of T is a repair that satisfies the following additional condition: For each $C' \sqsubseteq D' \in T'$, there is $C \sqsubseteq D \in T$ such that $C = C'$.

FP-repairs can be computed by a little modification to the framework for GC-repairs.

Main result: For each TBox and each repair request, **the set of all optimal FP-repairs can be computed in exponential time**, and **every FP-repair is entailed by an optimal one**.

Contrary to GC-repairs, optimal FP-repairs might need additional expressivity. (But this is no problem!)
Fixed-Premise Repairs

Running example: An optimal FP-repair of \mathcal{T} is

$$\{ \text{MountainBike} \sqsubseteq \text{Bike},$$

$$\text{Bike} \sqcap \exists \text{hasPart} \cdot \text{SuspensionFork} \sqcap \exists \text{isSuitableFor} \cdot \text{OffRoadCycling},$$

$$\text{Bike} \sqsubseteq \exists \text{hasPart} \cdot \text{SuspensionFork} \sqcap \exists \text{isSuitableFor} \cdot \text{OffRoadCycling},$$

$$\exists \text{hasPart} \cdot \text{Fork} \sqcap \exists \text{isSuitableFor} \cdot \text{Cycling},$$

$$\text{SuspensionFork} \sqsubseteq \text{Fork},$$

$$\text{OffRoadCycling} \sqsubseteq \text{Cycling} \}$$
Conclusion

- A novel approach to repairing \mathcal{EL} TBoxes for unwanted concept inclusions has been developed.
- Two variants: GC-repairs and FP-repairs
- Each optimal repair is characterized by a polynomial-size repair seed.
- Optimal repairs can be computed in exponential time.
- Prototypical implementation: https://github.com/francesco-kriegel/right-repairs-of-el-tboxes
- Repair seed is obtained by user interaction.
Next Steps

- More expressivity:
 - Nominals \(\{a\} \) (also adds supports for ABox axioms)
 - Bottom concept \(\bot \)
 - Inverse roles \(r^- \)
 - Role inclusions \(R_1 \circ \cdots \circ R_n \subseteq S \)

- Support for a partitioning of the ontology into a static part and a refutable part.

- Improvement of FP-repairs by selective, automatic introduction of new premises (can currently be done manually).

F. Baader, F. Kriegel: **Pushing optimal ABox repair from \(\mathcal{EL} \) towards more expressive Horn-DLs.** KR 2022
Do you have questions or comments?