

Faculty of Computer Science • Institute of Theoretical Computer Science • Chair of Automata Theory

Pushing Optimal ABox Repair From \mathcal{EL} Towards More Expressive Horn-DLs

Franz Baader, Francesco Kriegel

Funded by the Al competence center ScaDS.Al Dresden/Leipzig, by DFG in Project 430150274 (Repairing Description Logic Ontologies), and by DFG in Project 389792660 (TRR 248: Foundations of Perspicuous Software Systems).

19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022), 5 August 2022

Introduction

Problem Setting: A DL ontology entails unwanted consequences, and thus needs to be repaired.

Introduction

- Problem Setting: A DL ontology entails unwanted consequences, and thus needs to be repaired.
- Classical Approach: Delete a minimal number of axioms from the ontology such that the unwanted consequences vanish.
- This is easy to understand and implement, but might destroy too many other consequences.

Introduction

- Problem Setting: A DL ontology entails unwanted consequences, and thus needs to be repaired.
- Classical Approach: Delete a minimal number of axioms from the ontology such that the unwanted consequences vanish.
- This is easy to understand and implement, but might destroy too many other consequences.
- Novel Approach: Modify the ontology such that a minimal number of consequences is removed, including the unwanted ones.

"Optimal Repair"

The Description Logic \mathcal{ELROI}

- Signature Σ consisting of individual names *a*, concept names *A*, and role names *r*
- **Roles** $R := r \mid r^{-}$
- Concept descriptions $C := \top |A| \{a\} | C \sqcap C | \exists R.C$

The Description Logic \mathcal{ELROI}

- Signature Σ consisting of individual names *a*, concept names *A*, and role names *r*
- Roles $R := r \mid r^-$
- Concept descriptions $C := \top |A| \{a\} | C \sqcap C | \exists R.C$
- TBox \mathcal{T} : finite set of concept inclusions $C \sqsubseteq D$ RBox \mathcal{R} : finite set of role inclusions $R_1 \circ \cdots \circ R_n \sqsubseteq S$ $\left. \right\}$ terminology $(\mathcal{T}, \mathcal{R})$
- ABox \mathcal{A} : finite set of concept assertions C(a) and role assertions r(a, b)

The Description Logic \mathcal{ELROI}

- Signature Σ consisting of individual names *a*, concept names *A*, and role names *r*
- Roles $R := r \mid r^-$
- Concept descriptions $C := \top |A| \{a\} | C \sqcap C | \exists R.C$
- TBox \mathcal{T} : finite set of concept inclusions $C \sqsubseteq D$ RBox \mathcal{R} : finite set of role inclusions $R_1 \circ \cdots \circ R_n \sqsubseteq S$ $\left. \right\}$ terminology $(\mathcal{T}, \mathcal{R})$
- ABox \mathcal{A} : finite set of concept assertions C(a) and role assertions r(a, b)

Quantified ABoxes with Equalities

- Ouantified ABox $\exists X. A$: finite set X of variables, and finite set A of (flat) concept assertions A(u), role assertions r(u, v), and equality assertions $a \equiv b$, where u and v are individual names or variables.
- Entailment: $\exists X. \mathcal{A} \models^{\mathcal{T}, \mathcal{R}} \exists Y. \mathcal{B}$ if each model of $\exists X. \mathcal{A}$ and $(\mathcal{T}, \mathcal{R})$ is a model of $\exists Y. \mathcal{B}$.

Repairs

Basic Definitions

- A **repair request** \mathcal{P} is a union of
 - **1** the local request \mathcal{P}_{loc} : finite set of concept assertions C(a)
 - and role assertions r(a, b) rewritten to $\exists r. \{b\}(a)$
 - 2 the global request \mathcal{P}_{glo} : finite set of concept descriptions D

Repairs

Basic Definitions

A repair request *P* is a union of
 1 the local request *P*_{loc}: finite set of concept assertions *C*(*a*) and role assertions *r*(*a*,*b*) rewritten to ∃*r*.{*b*}(*a*)
 2 the global request *P*_{glo}: finite set of concept descriptions *D*

```
■ \exists Y.\mathcal{B} is a repair of \exists X.\mathcal{A} for \mathcal{P} w.r.t. (\mathcal{T},\mathcal{R}) if

1 \exists X.\mathcal{A} \models^{\mathcal{T},\mathcal{R}} \exists Y.\mathcal{B}

2 \exists Y.\mathcal{B} \not\models^{\mathcal{T},\mathcal{R}} C(a) for each C(a) \in \mathcal{P}_{\mathsf{loc}}

3 \exists Y.\mathcal{B} \not\models^{\mathcal{T},\mathcal{R}} \exists \{x\}. \{D(x)\} for each D \in \mathcal{P}_{\mathsf{glo}}
```

Repairs

Basic Definitions

- A **repair request** \mathcal{P} is a union of
 - **1** the local request \mathcal{P}_{loc} : finite set of concept assertions C(a)

and role assertions r(a, b) rewritten to $\exists r. \{b\}(a)$

2 the global request \mathcal{P}_{glo} : finite set of concept descriptions \vec{D}

```
■ \exists Y.\mathcal{B} is a repair of \exists X.\mathcal{A} for \mathcal{P} w.r.t. (\mathcal{T},\mathcal{R}) if

1 \exists X.\mathcal{A} \models^{\mathcal{T},\mathcal{R}} \exists Y.\mathcal{B}

2 \exists Y.\mathcal{B} \not\models^{\mathcal{T},\mathcal{R}} C(a) for each C(a) \in \mathcal{P}_{\mathsf{loc}}

3 \exists Y.\mathcal{B} \not\models^{\mathcal{T},\mathcal{R}} \exists \{x\}. \{D(x)\} for each D \in \mathcal{P}_{\mathsf{glo}}
```

■ A repair $\exists Y.\mathcal{B}$ is **optimal** if it is not strictly entailed by another repair, i.e., there is no other repair $\exists Z.\mathcal{C}$ such that $\exists Z.\mathcal{C} \models^{\mathcal{T},\mathcal{R}} \exists Y.\mathcal{B}$ but $\exists Y.\mathcal{B} \not\models^{\mathcal{T},\mathcal{R}} \exists Z.\mathcal{C}$.

Entailment of Quantified ABoxes

- Assume that $(\mathcal{T},\mathcal{R})$ is an \mathcal{ELROI} terminology.
- If $\exists Y.\mathcal{B}$ can be constructed from $\exists X.\mathcal{A}$ by a finite number of applications of the following rules, then $\exists X.\mathcal{A} \models^{\mathcal{T},\mathcal{R}} \exists Y.\mathcal{B}$.
- **Delete Rule:** Delete an assertion from $\exists X.A.$
- **Copy Rule:** Copy an object in $\exists X. A$ into a fresh variable.
 - **CI Rule:** If $C \sqsubseteq D \in \mathcal{T}$ and $\mathcal{A} \models C(t)$ but $\mathcal{A} \not\models D(t)$, then unfold D(t) into $\exists X.\mathcal{A}$.
 - **RI Rule:** If $R_1 \circ \cdots \circ R_n \sqsubseteq S \in \mathcal{R}$ and $\mathcal{A} \models R_1(t_0, t_1), \ldots, R_n(t_{n-1}, t_n)$ but $\mathcal{A} \not\models S(t_0, t_n)$, then add $S(t_0, t_n)$ to $\exists X.\mathcal{A}$.

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

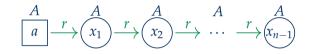
- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$



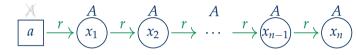
Example

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

Applying the CI Rule (and the RI Rule) does not terminate.

Example

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

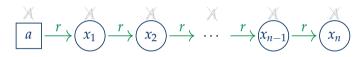


Applying the CI Rule (and the RI Rule) does not terminate.

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

- Applying the CI Rule (and the RI Rule) does not terminate.
- We have constructed a repair

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$



- Applying the CI Rule (and the RI Rule) does not terminate.
- We have constructed a repair, but there is no optimal repair.

Example

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

- Applying the CI Rule (and the RI Rule) does not terminate.
- We have constructed a repair, but there is no optimal repair.

Limitation: The terminology (T, R) must be **terminating**, i.e., applying the CI Rule and the RI Rule to a qABox always terminates.

Example

- **qABox:** $\exists \emptyset. \{A(a)\}$
- **TBox:** $\{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$
- RBox: Ø
- **Repair Request:** $\{A(a)\}$

- Applying the CI Rule (and the RI Rule) does not terminate.
- We have constructed a repair, but there is no optimal repair.

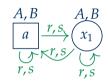
Limitation: The terminology $(\mathcal{T},\mathcal{R})$ must be terminating,

- i.e., applying the CI Rule and the RI Rule to a qABox always terminates.
- Then every qABox $\exists X.\mathcal{A}$ has a **saturation** sat^{\mathcal{T},\mathcal{R}}($\exists X.\mathcal{A}$) that is obtained by exhaustively applying the CI Rule and the RI Rule to $\exists X.\mathcal{A}$.
- $\exists X.\mathcal{A} \models^{\mathcal{T},\mathcal{R}} \exists Y.\mathcal{B}$ if and only if there is a homomorphism from $\exists Y.\mathcal{B}$ to sat^{\mathcal{T},\mathcal{R}}($\exists X.\mathcal{A}$) (and also: if and only if $\exists Y.\mathcal{B}$ can be constructed from $\exists X.\mathcal{A}$ by means of the four rules).

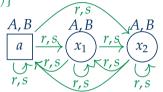
- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.

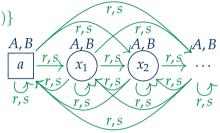
- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.



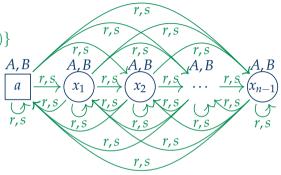
- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.



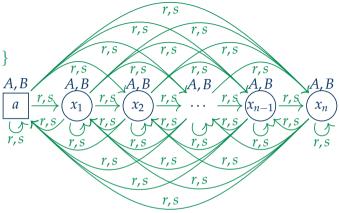
- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.



- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.

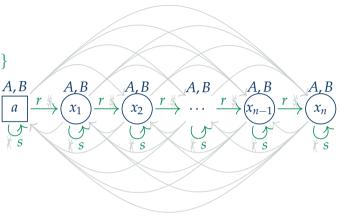


- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.



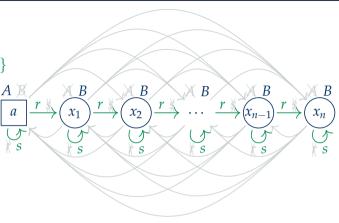
Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.



KR 2022

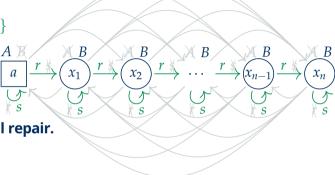
- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.
- We have constructed a repair



Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubset s\}$
- Repair Request: $\{A \sqcap B\}$
- The terminology is terminating.

We have constructed a repair, but which is not entailed by an optimal repair.



а

AB

а

В

 \mathbf{S}

 χ_1

В

 x_2

S

B

S

B

 x_n

S

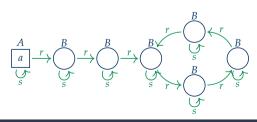
R

Regular RBoxes

Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.

We have constructed a repair, but ^{*}/_S which is not entailed by an optimal repair.



AB

а

В

 \mathbf{S}

 χ_1

В

 x_2

S

B

S

B

 x_n

S

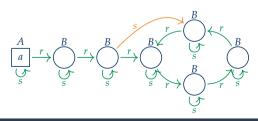
R

Regular RBoxes

Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \sqcap B\}$
- The terminology is terminating.

We have constructed a repair, but ^{*}/_S which is not entailed by an optimal repair.



AB

а

В

 \mathbf{S}

 χ_1

В

 x_2

S

B

S

B

 x_n

S

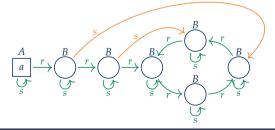
R

Regular RBoxes

Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.

We have constructed a repair, but ^{*}/_S which is not entailed by an optimal repair.



AB

а

В

 \mathbf{S}

 χ_1

В

 x_2

S

B

S

B

 x_n

S

B

Regular RBoxes

Example

A

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.

We have constructed a repair, but ^{* s} which is not entailed by an optimal repair. AB

а

В

 \mathbf{S}

 χ_1

В

 x_2

S

B

S

B

 x_n

S

B

Regular RBoxes

Example

A, B

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.

We have constructed a repair, but ^{* s} which is not entailed by an optimal repair.

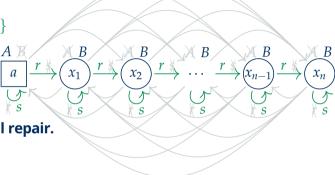
Pushing Optimal ABox Repair From \mathcal{EL} Towards More Expressive Horn-DLs

Regular RBoxes

Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubset s\}$
- Repair Request: $\{A \sqcap B\}$
- The terminology is terminating.

We have constructed a repair, but which is not entailed by an optimal repair.



а

В

 x_2

S

В

S

B

 x_n

 \mathbf{S}

B

Regular RBoxes

Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.
- We have constructed a repair, but ^{*}/_S which is not entailed by an optimal repair.
- Let $L_{\mathcal{R}}(R) \coloneqq \{ S_1 \cdots S_n \mid S_1 \circ \cdots \circ S_n \sqsubseteq^{\mathcal{R}} R \}.$
- The language $L_{\mathcal{R}}(s) = \{ r^n s(r^-)^n \mid n \ge 0 \}$ is not regular.

AR

а

В

S

 χ_1

В

 x_2

S

В

S

B

 x_n

 \mathbf{S}

6/12

B

Regular RBoxes

Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.
- We have constructed a repair, but ^{*}/_S which is not entailed by an optimal repair.
- Let $L_{\mathcal{R}}(R) \coloneqq \{ S_1 \cdots S_n \mid S_1 \circ \cdots \circ S_n \sqsubseteq^{\mathcal{R}} R \}.$
- The language $L_{\mathcal{R}}(s) = \{ r^n s(r^-)^n \mid n \ge 0 \}$ is not regular.
- **Limitation:** The RBox \mathcal{R} must be **regular**, i.e., $L_{\mathcal{R}}(R)$ is regular for each role R.

AB

а

В

S

 χ_1

В

 x_2

 \mathbf{S}

В

S

В

S

 χ_1

B

 x_n

Regular RBoxes

Example

- **qABox:** $\exists \emptyset$. {r(a,a), s(a,a), A(a), B(a)}
- **TBox:** $\{\exists s.A \sqsubseteq A, \exists s.B \sqsubseteq B\}$
- **RBox:** $\{r \circ s \circ r^- \sqsubseteq s\}$
- **Repair Request:** $\{A \cap B\}$
- The terminology is terminating.
- We have constructed a repair, but ^{*}/_S which is not entailed by an optimal repair.
- Let $L_{\mathcal{R}}(R) \coloneqq \{ S_1 \cdots S_n \mid S_1 \circ \cdots \circ S_n \sqsubseteq^{\mathcal{R}} R \}.$
- The language $L_{\mathcal{R}}(s) = \{ r^n s(r^-)^n \mid n \ge 0 \}$ is not regular.
- **Limitation:** The RBox \mathcal{R} must be **regular**, i.e., $L_{\mathcal{R}}(R)$ is regular for each role R.

AB

а

- Then every language $L_{\mathcal{R}}(R)$ is accepted by some finite automaton \mathfrak{A}_R .
- We introduce an **automaton concept** $\exists q.C$ for each atom $\exists R.C$ occurring in \mathcal{P} or \mathcal{T} and for each state q in \mathfrak{A}_R .
- $\exists q.C$ represents the disjunction $\sqcup \{ \exists S_1... \exists S_n.C \mid \mathfrak{A}_R \text{ with initial state } q \text{ accepts } S_1...S_n \}.$

Small Repair Property

- By means of filtration, we can show a **small repair property**.
- Every repair of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. $(\mathcal{T},\mathcal{R})$ is entailed by a repair with at most $m \cdot 2^n$ objects, where
 - *m* is the number of objects in sat^{*T*,*R*}($\exists X.A$)
 - *n* is the number of atoms occurring in \mathcal{P} or \mathcal{T} plus the number of automaton concepts.

Small Repair Property

- By means of filtration, we can show a **small repair property**.
- Every repair of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. $(\mathcal{T},\mathcal{R})$ is entailed by a repair with at most $m \cdot 2^n$ objects, where
 - *m* is the number of objects in sat^{T, R}($\exists X. A$)
 - *n* is the number of atoms occurring in \mathcal{P} or \mathcal{T} plus the number of automaton concepts.
- Theorem: 1 The set of all optimal repairs can effectively be computed.
 2 Every repair is entailed by a optimal repair.

- Repairs can also be directly constructed from the input.
- A **repair type** \mathcal{K} is a set consisting of atoms A and $\{a\}$ and of automaton concepts $\exists q.C.$
- \blacksquare \mathcal{K} must be closed under premises:
 - **1** If *C* is a subconcept in \mathcal{P} or \mathcal{T} and $C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\text{Conj}_{\mathcal{R}}(C) \cap \mathcal{L} \neq \emptyset$.
 - **2** If $\exists q.C$ is an automaton concept and $\exists q.C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\exists q.C \in \mathcal{K}$.

- Repairs can also be directly constructed from the input.
- A **repair type** \mathcal{K} is a set consisting of atoms A and $\{a\}$ and of automaton concepts $\exists q.C.$
- \blacksquare \mathcal{K} must be closed under premises:
 - 1 If *C* is a subconcept in \mathcal{P} or \mathcal{T} and $C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\text{Conj}_{\mathcal{R}}(C) \cap \mathcal{L} \neq \emptyset$. 2 If $\exists q.C$ is an automaton concept and $\exists q.C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\exists q.C \in \mathcal{K}$.
- The **canonical repair** of $\exists X.\mathcal{A}$ is constructed from $\exists Y.\mathcal{B} := \operatorname{sat}^{\mathcal{T},\mathcal{R}}(\exists X.\mathcal{A})$ as follows:

```
u is an object of \exists Y.\mathcal{B}
\mathcal{K} is a repair type
```

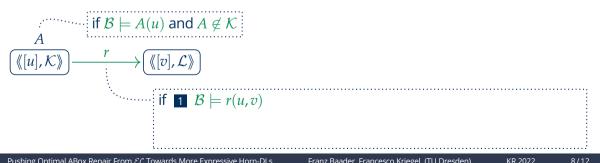
 $\langle\!\!\langle [u], \mathcal{K} \rangle\!\!\rangle$

- Repairs can also be directly constructed from the input.
- A **repair type** \mathcal{K} is a set consisting of atoms A and $\{a\}$ and of automaton concepts $\exists q.C.$
- \blacksquare \mathcal{K} must be closed under premises:
 - **1** If *C* is a subconcept in \mathcal{P} or \mathcal{T} and $C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\text{Conj}_{\mathcal{R}}(C) \cap \mathcal{L} \neq \emptyset$.
 - **2** If $\exists q.C$ is an automaton concept and $\exists q.C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\exists q.C \in \mathcal{K}$.
- The **canonical repair** of $\exists X.\mathcal{A}$ is constructed from $\exists Y.\mathcal{B} := \operatorname{sat}^{\mathcal{T},\mathcal{R}}(\exists X.\mathcal{A})$ as follows:

- Repairs can also be directly constructed from the input.
- A **repair type** \mathcal{K} is a set consisting of atoms A and $\{a\}$ and of automaton concepts $\exists q.C.$
- \blacksquare \mathcal{K} must be closed under premises:
 - 1 If *C* is a subconcept in \mathcal{P} or \mathcal{T} and $C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\text{Conj}_{\mathcal{R}}(C) \cap \mathcal{L} \neq \emptyset$.
 - **2** If $\exists q.C$ is an automaton concept and $\exists q.C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\exists q.C \in \mathcal{K}$.
- The **canonical repair** of $\exists X.\mathcal{A}$ is constructed from $\exists Y.\mathcal{B} := \operatorname{sat}^{\mathcal{T},\mathcal{R}}(\exists X.\mathcal{A})$ as follows:

$$\underbrace{\stackrel{\cdots}{\underset{A}{iul},\mathcal{K}}}_{[u],\mathcal{K}} \stackrel{\text{if } \mathcal{B} \models A(u) \text{ and } A \notin \mathcal{K}}_{[u]}$$

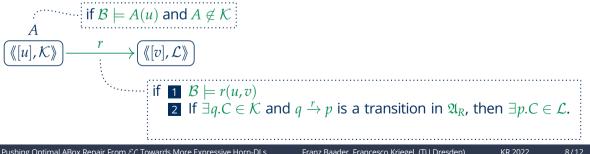
- Repairs can also be directly constructed from the input.
- A **repair type** \mathcal{K} is a set consisting of atoms A and $\{a\}$ and of automaton concepts $\exists a, C$.
- \blacksquare \mathcal{K} must be closed under premises:
 - **1** If *C* is a subconcept in \mathcal{P} or \mathcal{T} and $C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\text{Conj}_{\mathcal{R}}(C) \cap \mathcal{L} \neq \emptyset$.
 - **2** If $\exists q.C$ is an automaton concept and $\exists q.C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\exists q.C \in \mathcal{K}$.
- The **canonical repair** of $\exists X.\mathcal{A}$ is constructed from $\exists Y.\mathcal{B} := \operatorname{sat}^{\mathcal{T},\mathcal{R}}(\exists X.\mathcal{A})$ as follows:



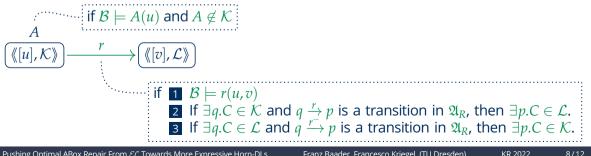
Pushing Optimal ABox Repair From *EL* Towards More Expressive Horn-DLs

Franz Baader, Francesco Kriegel (TU Dresden)

- Repairs can also be directly constructed from the input.
- A **repair type** \mathcal{K} is a set consisting of atoms A and $\{a\}$ and of automaton concepts $\exists q.C.$
- \blacksquare \mathcal{K} must be closed under premises:
 - 1 If C is a subconcept in \mathcal{P} or \mathcal{T} and $C \sqsubset^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\text{Conj}_{\mathcal{P}}(C) \cap \mathcal{L} \neq \emptyset$.
 - **2** If $\exists q.C$ is an automaton concept and $\exists q.C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\exists q.C \in \mathcal{K}$.
 - The **canonical repair** of $\exists X.\mathcal{A}$ is constructed from $\exists Y.\mathcal{B} \coloneqq \mathsf{sat}^{\mathcal{T},\mathcal{R}}(\exists X.\mathcal{A})$ as follows:



- Repairs can also be directly constructed from the input.
- A **repair type** \mathcal{K} is a set consisting of atoms A and $\{a\}$ and of automaton concepts $\exists q.C.$
- \blacksquare \mathcal{K} must be closed under premises:
 - **1** If *C* is a subconcept in \mathcal{P} or \mathcal{T} and $C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\text{Conj}_{\mathcal{P}}(C) \cap \mathcal{L} \neq \emptyset$.
 - **2** If $\exists q.C$ is an automaton concept and $\exists q.C \sqsubseteq^{\mathcal{T},\mathcal{R}} D$ for some $D \in \mathcal{K}$, then $\exists q.C \in \mathcal{K}$.
 - The **canonical repair** of $\exists X.\mathcal{A}$ is constructed from $\exists Y.\mathcal{B} \coloneqq \mathsf{sat}^{\mathcal{T},\mathcal{R}}(\exists X.\mathcal{A})$ as follows:



- In order to fulfill the repair request \mathcal{P} ,
 - each individual name *a* must be represented by a copy $\langle\!\langle [a], \mathcal{K} \rangle\!\rangle$ where Conj_{*R*}(*C*) $\cap \mathcal{K} \neq \emptyset$ for each *C*(*a*) $\in \mathcal{P}_{loc}$.
 - 2 and the canonical repair only contains copies $\langle\!\langle [u], \mathcal{K} \rangle\!\rangle$ where $\operatorname{Conj}_{\mathcal{R}}(D) \cap \mathcal{K} \neq \emptyset$ for each $D \in \mathcal{P}_{glo}$.
- See our paper for the details regarding nominals and equality assertions.

- In order to fulfill the repair request \mathcal{P} ,
 - each individual name *a* must be represented by a copy $\langle\!\langle [a], \mathcal{K} \rangle\!\rangle$ where Conj_{*R*}(*C*) $\cap \mathcal{K} \neq \emptyset$ for each *C*(*a*) $\in \mathcal{P}_{loc}$.
 - 2 and the canonical repair only contains copies $\langle\!\langle [u], \mathcal{K} \rangle\!\rangle$ where $\operatorname{Conj}_{\mathcal{R}}(D) \cap \mathcal{K} \neq \emptyset$ for each $D \in \mathcal{P}_{glo}$.
- See our paper for the details regarding nominals and equality assertions.
- **Completeness:** Given an arbitrary repair, the mapping $u \mapsto \langle\!\langle [h(u)], \mathcal{F}(u) \rangle\!\rangle$ is a homomorphism to a canonical repair, where
 - *h* is a homomorphism to the saturation sat $\mathcal{T},\mathcal{R}(\exists X.\mathcal{A})$
 - and the repair type $\mathcal{F}(u)$ consists of all atoms and automaton concepts that are not satisfied by *u*.
- Theorem: 1 Each canonical repair is a repair and can effectively be computed.
 2 Every repair is entailed by a canonical repair.
- **Corollary:** Each optimal repair is equivalent to a canonical repair.

User Interaction

- Usually, there is no unique optimal repair.
- Exponentially many optimal repairs can exist in the worst case. The source of non-determinism are conjunctions that either are in *P* or imply a concept in *P*.
- It is impractical to first compute all optimal repairs and then let the user choose a suitable one.

User Interaction

- Usually, there is no unique optimal repair.
- Exponentially many optimal repairs can exist in the worst case. The source of non-determinism are conjunctions that either are in *P* or imply a concept in *P*.
- It is impractical to first compute all optimal repairs and then let the user choose a suitable one.
- Instead, an optimal repair can be identified by user interaction with polynomially many choices.
- As questions we have:
 - 1 equality assertions $a \equiv b$
 - **2** concept assertions E(a) where E is an atom or an automaton concept.

The user can either accept, reject, or ignore such a question.

User Interaction

- Usually, there is no unique optimal repair.
- Exponentially many optimal repairs can exist in the worst case. The source of non-determinism are conjunctions that either are in *P* or imply a concept in *P*.
- It is impractical to first compute all optimal repairs and then let the user choose a suitable one.
- Instead, an optimal repair can be identified by user interaction with polynomially many choices.
- As questions we have:
 - 1 equality assertions $a \equiv b$
 - **2** concept assertions E(a) where *E* is an atom or an automaton concept.
 - The user can either accept, reject, or ignore such a question.
- If no question has been ignored, then there is a unique optimal repair that entails all accepted assertions but does not entail any rejected assertion or any unwanted consequence in *P*.

Inconsistency Repairs

- We extend \mathcal{ELROI} with the **bottom concept** \perp .
- A qABox can now be inconsistent w.r.t. a terminology, e.g., $\{A(a)\}$ w.r.t. $\{A \sqsubseteq \bot\}$.
- In addition to repairing for unwanted consequences, now also repairing for inconsistency can be desired.

Inconsistency Repairs

- We extend \mathcal{ELROI} with the **bottom concept** \perp .
- A qABox can now be inconsistent w.r.t. a terminology, e.g., $\{A(a)\}$ w.r.t. $\{A \sqsubseteq \bot\}$.
- In addition to repairing for unwanted consequences, now also repairing for inconsistency can be desired.
- \blacksquare We can partition each $\mathcal{ELROI}(\bot)$ TBox $\mathcal T$ into
 - 1 a positive part \mathcal{T}_+ in which \perp does not occur
 - **2** and an unsatisfiable part T_{\perp} containing only CIs of the form $C \sqsubseteq \perp$.
- In order to repair for inconsistency, we add to the global request \mathcal{P}_{glo} every concept *C* where $C \sqsubseteq \bot$ is in \mathcal{T}_{\bot} .

Inconsistency Repairs

- We extend \mathcal{ELROI} with the **bottom concept** \perp .
- A qABox can now be inconsistent w.r.t. a terminology, e.g., $\{A(a)\}$ w.r.t. $\{A \sqsubseteq \bot\}$.
- In addition to repairing for unwanted consequences, now also repairing for inconsistency can be desired.
- **We** can partition each $\mathcal{ELROI}(\bot)$ TBox \mathcal{T} into
 - 1 a positive part \mathcal{T}_+ in which \perp does not occur
 - **2** and an unsatisfiable part \mathcal{T}_{\perp} containing only CIs of the form $C \sqsubseteq \perp$.
- In order to repair for inconsistency, we add to the global request \mathcal{P}_{glo} every concept *C* where $C \sqsubseteq \bot$ is in \mathcal{T}_{\bot} .
- Since everything is entailed by a qABox $\exists X.\mathcal{A}$ that is inconsistent w.r.t. $(\mathcal{T}, \mathcal{R})$, we now only require that a repair is entailed by it w.r.t. $(\mathcal{T}_+, \mathcal{R})$.
- We have so obtained a reduction to our canonical repairs.

What's further possible:

By structural transformation, our repair framework can also support:
 A static part in the input qABox, which must not be changed.

What's further possible:

By structural transformation, our repair framework can also support:

- 1 A static part in the input qABox, which must not be changed.
- 2 Conjunctive queries with c-acyclic cores in the repair request.

What's further possible:

By structural transformation, our repair framework can also support:

- 1 A static part in the input qABox, which must not be changed.
- 2 Conjunctive queries with c-acyclic cores in the repair request.
- **3** Horn- \mathcal{ALCOI} TBoxes, which consist of CIs $E \sqsubseteq F$ constructed by

 $E ::= \bot | \top | A | \{a\} | E \sqcap E | \exists R.E | E \sqcup E$ $F ::= \bot | \top | A | \{a\} | F \sqcap F | \exists R.F | \forall R.F | \neg E | \neg E \sqcup F$

What's further possible:

By structural transformation, our repair framework can also support:

- 1 A static part in the input qABox, which must not be changed.
- 2 Conjunctive queries with c-acyclic cores in the repair request.
- **3** Horn- \mathcal{ALCOI} TBoxes, which consist of CIs $E \sqsubseteq F$ constructed by

 $E ::= \bot | \top | A | \{a\} | E \sqcap E | \exists R.E | E \sqcup E$ $F ::= \bot | \top | A | \{a\} | F \sqcap F | \exists R.F | \forall R.F | \neg E | \neg E \sqcup F$

4 Regular path expressions ho in place of roles in the repair request, where

 $\rho \coloneqq r \mid r^- \mid \varepsilon \mid \rho + \rho \mid \rho \circ \rho \mid \rho^*$

What's further possible:

By structural transformation, our repair framework can also support:

- 1 A static part in the input qABox, which must not be changed.
- 2 Conjunctive queries with c-acyclic cores in the repair request.
- **3** Horn- \mathcal{ALCOI} TBoxes, which consist of CIs $E \sqsubseteq F$ constructed by

 $E ::= \bot | \top | A | \{a\} | E \sqcap E | \exists R.E | E \sqcup E$ $F ::= \bot | \top | A | \{a\} | F \sqcap F | \exists R.F | \forall R.F | \neg E | \neg E \sqcup F$

4 Regular path expressions ρ in place of roles in the repair request, where

 $\rho \coloneqq r \mid r^- \mid \varepsilon \mid \rho + \rho \mid \rho \circ \rho \mid \rho^*$

What's not possible:

■ Functional roles can prevent existence of optimal repairs, as also can existential self-restrictions ∃*r*.Self in the repair request.

What's further possible:

By structural transformation, our repair framework can also support:

- 1 A static part in the input qABox, which must not be changed.
- 2 Conjunctive queries with c-acyclic cores in the repair request.
- **3** Horn- \mathcal{ALCOI} TBoxes, which consist of CIs $E \sqsubseteq F$ constructed by

 $E ::= \bot | \top | A | \{a\} | E \sqcap E | \exists R.E | E \sqcup E$ $F ::= \bot | \top | A | \{a\} | F \sqcap F | \exists R.F | \forall R.F | \neg E | \neg E \sqcup F$

4 Regular path expressions ρ in place of roles in the repair request, where

 $\rho \coloneqq r \mid r^- \mid \varepsilon \mid \rho + \rho \mid \rho \circ \rho \mid \rho^*$

What's not possible:

Functional roles can prevent existence of optimal repairs, as also can existential self-restrictions $\exists r$. Self in the repair request.

■ Thus, Horn-*SROIQ* cannot be fully supported if the goal is computing optimal repairs.

Do you have questions or comments?