Faculty of Computer Science ● Institute of Theoretical Computer Science ● Chair of Automata Theory

REPAIRING \mathcal{EL} TBOXES BY MEANS OF COUNTERMODELS OBTAINED BY MODEL TRANSFORMATION

Willi Hieke ¹, Francesco Kriegel ², Adrian Nuradiansyah ²

¹ Funded in DFG Research Training Group 1763 (QuantLA).

² Funded in DFG Project 430150274.

The 34th International Workshop on Description Logics (DL 2021), 22 September 2021

Basics

- Description logic: \mathcal{EL}
- Concepts: $C := \top \mid A \mid C \sqcap C \mid \exists r.C$ where A ranges over Σ_{C} and r ranges over Σ_{R}
- Concept inclusions: $C_1 \sqsubseteq C_2$
- TBox: finite set of concept inclusions
- Model-theoretic semantics

Repairs •0 Basics

- Description logic: \mathcal{EL}
- Concepts: $C := \top \mid A \mid C \sqcap C \mid \exists r. C$ where A ranges over Σ_{C} and r ranges over Σ_{R}
- Concept inclusions: $C_1 \sqsubseteq C_2$
- TBox: finite set of concept inclusions
- Model-theoretic semantics

Some notions:

- Sub(D) is the set of all subconcepts of D. Example: Sub($A_1 \sqcap \exists r. (B_1 \sqcap B_2)$) = { $A_1 \sqcap \exists r. (B_1 \sqcap B_2), \ A_1, \ \exists r. (B_1 \sqcap B_2), \ B_1 \sqcap B_2, \ B_1, \ B_2$ }
- Conj(D) is the set of all top-level conjuncts in D. Example: Conj($A_1 \sqcap \exists r. (B_1 \sqcap B_2)) = \{A_1, \exists r. (B_1 \sqcap B_2)\}$
- Atoms(D) is the set of all atoms occurring in D. Example: Atoms($A_1 \sqcap \exists r. (B_1 \sqcap B_2)) = \{A_1, \exists r. (B_1 \sqcap B_2), B_1, B_2\}$

Repairs ○● Countermodels 00000 Logical Intersection 000

Overview of our Approach

- \blacksquare Consider a TBox \mathcal{T} that entails a concept inclusion $C \sqsubseteq D$ (unwanted consequence).
- **Goal:** compute a *repair*, i.e., a TBox \mathcal{T}' where $\mathcal{T} \models \mathcal{T}'$ and $\mathcal{T}' \not\models C \sqsubseteq D$.

Overview of our Approach

- Consider a TBox \mathcal{T} that entails a concept inclusion $C \sqsubseteq D$ (unwanted consequence).
- **Goal:** compute a *repair*, i.e., a TBox \mathcal{T}' where $\mathcal{T} \models \mathcal{T}'$ and $\mathcal{T}' \not\models C \sqsubseteq D$.
- We calculate a repair as follows.
 - 1 Construct the canonical model $\mathcal{I}_{C,\mathcal{T}}$.
 - **2** Transform $\mathcal{I}_{C,T}$ to a countermodel \mathcal{J} to $C \sqsubseteq D$.
 - \blacksquare Axiomatize the logical intersection of \mathcal{T} and \mathcal{J} .

Repairs 00 Countermodels •000 Logical Intersection 000

Countermodels

- **Definition:** A *countermodel* to $C \sqsubseteq D$ is an interpretation that does not satisfy $C \sqsubseteq D$.
- \mathcal{I} is a countermodel to $C \sqsubseteq D$ if and only if there is $d \in \Delta^{\mathcal{I}}$ such that $d \in C^{\mathcal{I}}$ and $d \notin D^{\mathcal{I}}$.
- Thus: a countermodel to $C \sqsubseteq D$ exists if and only if $C \sqsubseteq D$ is no tautology.
- **Goal:** Construct a countermodel to the unwanted consequence $C \sqsubseteq D$ of \mathcal{T} that does not invalidate too many other consequences of \mathcal{T} .

Repairs ○O Countermodels ●○○○ Logical Intersection ○○○

Countermodels

- **Definition:** A *countermodel* to $C \sqsubseteq D$ is an interpretation that does not satisfy $C \sqsubseteq D$.
- lacklash I is a countermodel to $C \sqsubseteq D$ if and only if there is $d \in \Delta^{\mathcal{I}}$ such that $d \in C^{\mathcal{I}}$ and $d \not \in D^{\mathcal{I}}$.
- Thus: a countermodel to $C \sqsubseteq D$ exists if and only if $C \sqsubseteq D$ is no tautology.
- **Goal:** Construct a countermodel to the unwanted consequence $C \sqsubseteq D$ of \mathcal{T} that does not invalidate too many other consequences of \mathcal{T} .
- As starting point, we use the canonical model $\mathcal{I}_{C,\mathcal{T}}$:

$$\begin{split} & \Delta^{\mathcal{I}_{C,\mathcal{T}}} \coloneqq \{d_C\} \cup \{\, d_{C'} \mid \exists r.C' \in \mathsf{Sub}(C) \cup \mathsf{Sub}(\mathcal{T}) \,\} \\ & A^{\mathcal{I}_{C,\mathcal{T}}} \coloneqq \{\, d_D \mid \mathcal{T} \models D \sqsubseteq A \,\} \\ & r^{\mathcal{I}_{C,\mathcal{T}}} \coloneqq \{\, (d_D,d_{D'}) \mid \mathcal{T} \models D \sqsubseteq \exists r.D' \text{ and } \exists r.D' \in \mathsf{Sub}(\mathcal{T}) \cup \mathsf{Conj}(D) \,\} \end{split}$$

- Recall that $\mathcal{I}_{C,\mathcal{T}} \models \mathcal{T}$ and $d_C \in C^{\mathcal{I}_{C,\mathcal{T}}}$. Thus $d_C \in D^{\mathcal{I}_{C,\mathcal{T}}}$.
- **Idea:** We will modify $\mathcal{I}_{C,\mathcal{T}}$ such that d_C stays an instance of C but is no instance of D anymore.

Underlying Idea

- We adopt our technique for repairing ABoxes that removes unwanted consequences in form of concept assertions D(a).
 - Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and Rafael Peñaloza: *Computing Compliant Anonymisations of Quantified ABoxes w.r.t. && Policies.* In Proceedings of the 19th International Semantic Web Conference (ISWC 2020).
- The construction of these ABox repairs is based on the negation of a recursive characterization of the instance problem:
 - a is no instance of D w.r.t. \mathcal{A} if and only if there is an atom A or $\exists r.E$ in $\mathsf{Conj}(D)$ such that $A(a) \not\in \mathcal{A}$ or each r-successor of a is no instance of E w.r.t. \mathcal{A} , respectively.
- Prior to removing assertions, we also create copies of objects in order to minimize the amount of information loss.

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D \coloneqq A \sqcap \exists r.B \sqsubseteq A_1 \sqcap \exists r.(B_1 \sqcap B_2)$

Example

- TBox $\mathcal{T} \coloneqq \{A \sqsubseteq A_1, \ B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D \coloneqq A \sqcap \exists r.B \sqsubseteq A_1 \sqcap \exists r.(B_1 \sqcap B_2)$

Canonical model $\mathcal{I}_{C,\mathcal{T}}$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

Canonical model $\mathcal{I}_{C,\mathcal{T}}$

Countermodel $\mathcal J$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

Canonical model $\mathcal{I}_{C,\mathcal{T}}$

Countermodel ${\mathcal J}$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

Canonical model $\mathcal{I}_{C,\mathcal{T}}$

Countermodel ${\mathcal J}$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

Canonical model $\mathcal{I}_{C,\mathcal{T}}$

Countermodel ${\mathcal J}$

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

Repairs ○○ Countermodels OOO●O Logical Intersection OOO

Countermodels

A Transduction based on ABox Repairs

- We use transductions as formalism for describing the transformation of $\mathcal{I}_{C,\mathcal{T}}$ to a countermodel.
- **Definition:** A *transduction* τ is a binary relation on interpretations.

A Transduction based on ABox Repairs

- We use transductions as formalism for describing the transformation of $\mathcal{I}_{C,\mathcal{T}}$ to a countermodel.
- **Definition:** A *transduction* τ is a binary relation on interpretations.
- Based on our ABox repair technique, the functional transduction $\tau_{\mathsf{repair},D}$ maps each interpretation \mathcal{I} to the following interpretation:

$$\Delta^{\tau_{\mathsf{repair},D}(\mathcal{I})} \coloneqq \left\{ \left. d_{\mathcal{K}} \right| \begin{array}{l} d \in \Delta^{\mathcal{I}}, \ \mathcal{K} \subseteq \mathsf{Atoms}(D), \ d \in F^{\mathcal{I}} \ \mathsf{for \ each} \ F \in \mathcal{K}, \\ \mathsf{and} \ \mathcal{K} \ \mathsf{does \ not \ contain} \ \sqsubseteq_{\emptyset}\text{-comparable \ atoms} \end{array} \right\}$$

$$A^{\tau_{\mathsf{repair},D}(\mathcal{I})} \coloneqq \left\{ \left. d_{\mathcal{K}} \mid d \in A^{\mathcal{I}} \ \mathsf{and} \ A \not\in \mathcal{K} \right\} \\ r^{\tau_{\mathsf{repair},D}(\mathcal{I})} \coloneqq \left\{ \left. (d_{\mathcal{K}},e_{\mathcal{L}}) \right| \begin{array}{l} (d,e) \in r^{\mathcal{I}} \ \mathsf{and \ for \ each} \ \exists r. \ Q \in \mathcal{K} \ \mathsf{with} \ e \in Q^{\mathcal{I}}, \\ \mathsf{there \ is} \ F \in \mathcal{L} \ \mathsf{such \ that} \ Q \sqsubseteq_{\emptyset} F \end{array} \right\}$$

■ **Proposition:** $\tau_{\mathsf{repair},D}(\mathcal{I}_{C,\mathcal{T}})$ is a countermodel to $C \sqsubseteq D$ and is computable in exponential time.

Repairs 00 Countermodels 0000 Logical Intersection 000

Countermodels

A Transduction that Extracts a Small Countermodel

- We have seen in the example that $\tau_{\mathsf{repair},D}(\mathcal{I}_{C,\mathcal{T}})$ contains several countermodels to $C \sqsubseteq D$ as subinterpretations.
- lacksquare In order to extract these, we apply a second transduction au_{reach} to $au_{\mathsf{repair},D}(\mathcal{I}_{C,\mathcal{T}})$.
- This transduction τ_{reach} is described by a monadic second-order definition scheme:

precondition formula
$$\chi(\mathcal{W}) \coloneqq C^\#(v) \wedge \neg D^\#(v)$$
 domain formula
$$\delta(\mathcal{W},x) \coloneqq reach(v,x)$$
 concept formulae
$$\theta_A(\mathcal{W},x) \coloneqq A(x) \qquad \text{for each } A \in \Sigma_{\mathsf{C}}$$
 role formulae
$$\eta_r(\mathcal{W},x,y) \coloneqq r(x,y) \qquad \text{for each } r \in \Sigma_{\mathsf{R}}$$

where v is a first-order parameter in \mathcal{W} and $\operatorname{reach}(x,y) \coloneqq \forall X \colon x \in X \land (\forall x,y \colon x \in X \land \bigvee_{r \in \Sigma_{\mathbf{P}}} r(x,y) \to y \in X) \to y \in X$

Proposition: $\tau_{\mathsf{reach}}(\tau_{\mathsf{repair},D}(\mathcal{I}_{C,\mathcal{T}}))$ is a set of countermodels to $C \sqsubseteq D$ and is computable in exponential time.

epairs 00 Countermodels 00000 Logical Intersection ●00

Logical Intersection

- Let \mathcal{T} be a TBox and let \mathcal{J} be a countermodel to the unwanted consequence $C \sqsubseteq D$.
- **Idea:** Construct a repair from the logical intersection of \mathcal{T} and \mathcal{J} .

Repairs 00 Countermodels 00000 Logical Intersection ●00

Logical Intersection

- Let \mathcal{T} be a TBox and let \mathcal{J} be a countermodel to the unwanted consequence $C \sqsubseteq D$.
- **Idea:** Construct a repair from the logical intersection of \mathcal{T} and \mathcal{J} .
- **Definition:** The *logical intersection* $\mathcal{T} \triangle \mathcal{J}$ of \mathcal{T} and \mathcal{J} consists of all concept inclusions that both are entailed by \mathcal{T} and are satisfied by \mathcal{J} .
- By definition, each concept inclusion in $\mathcal{T} \triangle \mathcal{J}$ is entailed by \mathcal{T} .
- Since \mathcal{J} does not satisfy $C \sqsubseteq D$, no subset of $\mathcal{T} \triangle \mathcal{J}$ can entail $C \sqsubseteq D$.
- lacksquare One might now think that $\mathcal{T} \ \triangle \ \mathcal{J}$ is a repair, but . . .

Repairs 00 Countermodels 00000 Logical Intersection ●00

Logical Intersection

- Let \mathcal{T} be a TBox and let \mathcal{J} be a countermodel to the unwanted consequence $C \sqsubseteq D$.
- **Idea:** Construct a repair from the logical intersection of \mathcal{T} and \mathcal{J} .
- **Definition:** The *logical intersection* $\mathcal{T} \triangle \mathcal{J}$ of \mathcal{T} and \mathcal{J} consists of all concept inclusions that both are entailed by \mathcal{T} and are satisfied by \mathcal{J} .
- By definition, each concept inclusion in $\mathcal{T} \triangle \mathcal{J}$ is entailed by \mathcal{T} .
- Since \mathcal{J} does not satisfy $C \sqsubseteq D$, no subset of $\mathcal{T} \triangle \mathcal{J}$ can entail $C \sqsubseteq D$.
- lacksquare One might now think that $\mathcal{T} \ \triangle \ \mathcal{J}$ is a repair, but . . .
- $\mathcal{T} \triangle \mathcal{J}$ is infinite in general, and so $\mathcal{T} \triangle \mathcal{J}$ cannot directly be used as a repair.
- **Idea:** Compute a finite axiomatization of $\mathcal{T} \triangle \mathcal{J}$.

Axiomatization

■ To axiomatize $\mathcal{T} \triangle \mathcal{J}$, we utilize the approach described in:

Francesco Kriegel: *Constructing and Extending Description Logic Ontologies using Methods of Formal Concept Analysis.* Doctoral Thesis, Technische Universität Dresden, 2019.

In a nutshell:

- lacksquare A *closure operator* (clop) φ maps each concept E to a concept E^{φ} such that
 - 1 $E^{\varphi} \sqsubseteq_{\emptyset} E$,
 - $E \sqsubseteq_{\emptyset} F$ implies $E^{\varphi} \sqsubseteq_{\emptyset} F^{\varphi}$,
 - and $(E^{\varphi})^{\varphi} \equiv_{\emptyset} E^{\varphi}$.
- A concept inclusion $E \sqsubseteq F$ is *valid* for φ if $E^{\varphi} \sqsubseteq_{\emptyset} F$, written $\varphi \models E \sqsubseteq F$.

Axiomatization

■ To axiomatize $\mathcal{T} \triangle \mathcal{J}$, we utilize the approach described in:

Francesco Kriegel: *Constructing and Extending Description Logic Ontologies using Methods of Formal Concept Analysis.* Doctoral Thesis, Technische Universität Dresden, 2019.

In a nutshell:

- lacktriangle A *closure operator* (clop) φ maps each concept E to a concept E^{φ} such that
 - 1 $E^{\varphi} \sqsubseteq_{\emptyset} E$,
 - 2 $E \sqsubseteq_{\emptyset} F$ implies $E^{\varphi} \sqsubseteq_{\emptyset} F^{\varphi}$,
 - and $(E^{\varphi})^{\varphi} \equiv_{\emptyset} E^{\varphi}$.
- A concept inclusion $E \sqsubseteq F$ is *valid* for φ if $E^{\varphi} \sqsubseteq_{\emptyset} F$, written $\varphi \models E \sqsubseteq F$.
- The TBox \mathcal{T} induces a clop $\varphi_{\mathcal{T}}$ such that $\mathcal{T} \models E \sqsubseteq F$ if and only if $\varphi_{\mathcal{T}} \models E \sqsubseteq F$.
- The countermodel $\mathcal J$ induces a clop $\varphi_{\mathcal J}$ such that $\mathcal J \models E \sqsubseteq F$ if and only if $\varphi_{\mathcal J} \models E \sqsubseteq F$.
- The infimum $\varphi_{\mathcal{T}} \vartriangle \varphi_{\mathcal{J}}$ where $E^{\varphi_{\mathcal{T}} \vartriangle \varphi_{\mathcal{J}}} = \operatorname{lcs}(E^{\varphi_{\mathcal{T}}}, E^{\varphi_{\mathcal{J}}})$ has the following important property: $\varphi_{\mathcal{T}} \vartriangle \varphi_{\mathcal{J}} \models E \sqsubseteq F$ if and only if $\varphi_{\mathcal{T}} \models E \sqsubseteq F$ and $\varphi_{\mathcal{J}} \models E \sqsubseteq F$.
- The canonical base of $\varphi_{\mathcal{T}} \triangle \varphi_{\mathcal{J}}$ is an axiomatization of $\mathcal{T} \triangle \mathcal{J}$.

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, \ B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$
- Countermodel \mathcal{J} :

Example

■ TBox
$$\mathcal{T} := \{A \sqsubseteq A_1, \ B \sqsubseteq B_1 \sqcap B_2\}$$

■ Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$

■ Countermodel .7:

A, A_1 $d_{C,\{\exists r.(B_1 \sqcap B_2)\}}$ r $d_{B,\{B_1\}}$ $d_{B,\{B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$

Axiomatization of $\mathcal{T} \wedge \mathcal{J}$:

1 $A \sqsubseteq A_1$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, \ B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$
- Countermodel \mathcal{J} :

A, A_1 $d_{C,\{\exists r.(B_1 \sqcap B_2)\}}$ r $d_{B,\{B_1\}}$ $d_{B,\{B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$ $d_{B,\{B_1,B_2\}}$

- 1 $A \sqsubseteq A_1$
- $B \sqcap E \sqsubseteq B_1 \sqcap B_2$
 - \blacksquare where $E \in \Sigma_{\mathsf{C}} \setminus \{B, B_1, B_2\}$
 - \blacksquare or $E = \exists s. \top$ for $s \in \Sigma_R$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$
- Countermodel \mathcal{J} :

- 1 $A \sqsubseteq A_1$
- $B \sqcap E \sqsubseteq B_1 \sqcap B_2$
 - \blacksquare where $E \in \Sigma_{\mathsf{C}} \setminus \{B, B_1, B_2\}$
 - lacksquare or $E=\exists s. \top$ for $s\in \Sigma_{\mathsf{R}}$
- $\exists r.B \sqsubseteq \exists r.(B \sqcap B_1) \sqcap \exists r.(B \sqcap B_2)$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, \ B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$
- Countermodel \mathcal{J} :

- 1 $A \sqsubseteq A_1$
- $B \sqcap E \sqsubseteq B_1 \sqcap B_2$
 - \blacksquare where $E \in \Sigma_{\mathsf{C}} \setminus \{B, B_1, B_2\}$
 - \blacksquare or $E = \exists s. \top$ for $s \in \Sigma_R$
- $\exists r.B \sqsubseteq \exists r.(B \sqcap B_1) \sqcap \exists r.(B \sqcap B_2)$
- $\exists s. B \sqsubseteq \exists s. (B \sqcap B_1 \sqcap B_2) \text{ where } s \in \Sigma_{\mathsf{R}} \setminus \{r\}$

Example

- TBox $\mathcal{T} := \{A \sqsubseteq A_1, \ B \sqsubseteq B_1 \sqcap B_2\}$
- Unwanted consequence $C \sqsubseteq D := A \sqcap \exists r. B \sqsubseteq A_1 \sqcap \exists r. (B_1 \sqcap B_2)$
- Countermodel \mathcal{J} :

- 1 $A \sqsubseteq A_1$
- $2 \quad B \sqcap E \sqsubseteq B_1 \sqcap B_2$
 - \blacksquare where $E \in \Sigma_{\mathsf{C}} \setminus \{B, B_1, B_2\}$
 - lacksquare or $E=\exists s. \top$ for $s\in \Sigma_{\mathsf{R}}$
- $\exists r.B \sqsubseteq \exists r.(B \sqcap B_1) \sqcap \exists r.(B \sqcap B_2)$
- $\exists s. B \sqsubseteq \exists s. (B \sqcap B_1 \sqcap B_2) \text{ where } s \in \Sigma_{\mathsf{R}} \setminus \{r\}$
- $\exists r. (B \sqcap B_1) \sqcap \exists r. (B \sqcap B_2) \sqcap E \sqsubseteq \exists r. (B \sqcap B_1 \sqcap B_2)$
 - \blacksquare where $E \in \Sigma_{\mathsf{C}} \setminus \{A, A_1, B\}$
 - lacksquare or $E = \exists r. F \text{ for } F \in \Sigma_{\mathsf{C}} \setminus \{A, B, B_1, B_2\}$

 - lacksquare or $E=\exists s. \top$ for $s\in \Sigma_{\mathsf{R}}\setminus \{r\}$
 - 6 ..

That's it for now!

Do you have questions or comments?