Assignment 1

Foundations of Logic Programming

October 12, 2012

1. Given the definitions of σ (a function from variables to expressions) and $\hat{\sigma}$ (extension of σ to the function from expressions to expressions) from the lecture, prove that for each expression t:

$$t\widehat{\gamma}\widehat{\tau} = (t\widehat{\gamma})\widehat{\tau}$$

2. Show that composition of subsitutions is associative:

 $(\sigma\gamma)\tau = \sigma(\gamma\tau).$

3. We say that a substitution γ is a renaming if γ is 1-1 and onto mapping from its domain to itself (i.e. a *permutation* of the domain).

Prove that for every renaming θ there exists only one substitution θ^{-1} such that $\theta\theta^{-1} = \theta^{-1}\theta = \epsilon$. Prove that θ^{-1} is a renaming of θ .

- 4. Consider two substitutions, $\theta = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ and $\eta = \{y_1 \mapsto s_1, \ldots, y_m \mapsto s_m\}$. Prove that the composition $\theta\eta$ equals the result of the following procedure:
 - remove from the sequence: $x_1 \mapsto t_1 \eta, \dots, x_n \mapsto t_n \eta, y_1 \mapsto s_1, \dots, y_m \mapsto s_m,$ the bindings $x_i \mapsto t_i \eta$, for which $x_i = t_i \eta$ and the bindings $y_j \mapsto s_j$ for which $y_i \in \{x_1, \dots, x_n\}.$
 - form a substitution from the resulting sequence of bindings.
- 5. s is called an *instance* of t if $s = t\sigma$ for a substitution σ . Prove that s is a variant of t iff s is an instance of t and t is an instance of s.
- 6. In the lecture we have seen that θ is not more general than τ in the following examples:
 - (a) $\theta = \{x \mapsto y\}, \tau = \{x \mapsto a\}$
 - (b) $\theta = \{x \mapsto f(y, z)\}, \tau = \{x \mapsto f(a, a)\}$

Try to modify the definitions of θ and τ so that $\theta \leq \tau$.

7. Prove **Renaming Lemma**: $\theta \leq \eta$ and $\eta \leq \theta$ iff there is γ a renaming of θ such that, $\eta = \theta \gamma$.