Definitions

Foundations of Logic Programming

(compiled by Ilina Stoilkovska and Isabel Juarez Castro)

1 Substitutions

- 1. A substitution is a finite mapping from variables to terms¹ which assigns to each variable x in its domain a term t different from x. We write it as $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ where
 - x_1, \ldots, x_n are different variables,
 - t_1, \ldots, t_n are terms,
 - for $i \in [1, n], x_i \neq t_i$.

A pair $x_i \mapsto t_i$ is called a *binding*. When n = 0, the resulting substitution is called *empty substitution* and is denoted by ϵ .

- 2. Consider a substitution $\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$. If all t_1, \dots, t_n are ground, then θ is called *ground*, and if all t_1, \dots, t_n are variables, then θ is called a *pure variable substitution*. If θ is a 1-1 and onto mapping from its domain to itself, then θ is called a *renaming*.
- 3. We denote by $Dom(\theta)$ the set of variables $\{x_1, \ldots, x_n\}$, by $Ran(\theta)$ the set of terms $\{t_1, \ldots, t_n\}$, and by $VRan(\theta)$ the set of variables appearing in t_1, \ldots, t_n . Then we define $Var(\theta) = Dom(\theta) \cup VRan(\theta)$
- 4. The term $s\theta$ is called an *instance* of s. An instance is called *ground* if it contains no variables. If θ is a renaming, then $s\theta$ is called a *variant* of s.
- 5. The *composition* of substitutions θ and η , written as $\theta\eta$, is defined as follows. We put for a variable x

$$x(\theta\eta) := (x\theta)\eta$$

 $^{^1\}mathrm{A}$ substitution is then identified with the extension of such mapping to the mapping from terms to terms.

2 Unifiers

- 1. Let θ and τ be substitutions. We say that θ is more general than τ if for some substitution η we have $\tau = \theta \eta$.
- 2. θ is called a *unifier* of s and t if $s\theta = t\theta$. If a unifier of s and t exists, we say that s and t are *unifiable*.
 - θ is called a most general unifier (mgu in short) of s and t if it is a unifier of s and t that is more general than all unifiers of s and t.
 - An mgu θ of s and t is called *strong* if for all unifiers η of s and t we have $\eta = \theta \eta$.
- 3. A substitution θ is called idempotent if $\theta \theta = \theta$.
- 4. θ is a strong mgu iff for every unifier η we have $\eta = \theta \eta$
- 5. A unifier θ of s and t is called relevant if $Var(\theta) \subseteq Var(s) \cup Var(t)$.

3 Queries and Programs

- 1. We define atoms, queries, clauses, programs and resultants as follows:
 - if p is an *n*-ary relation symbol and t_1, \ldots, t_n are terms then $p(t_1, \ldots, t_n)$ is an *atom*,
 - a *query* is a finite sequence of atoms,
 - a *clause* is a construct of the form $H \leftarrow \mathbf{B}$, where H is an atom and \mathbf{B} is a query; H is called its head and \mathbf{B} its body,
 - a *program* is a finite set of clauses.
 - a *resultant* is a construct of the form $\mathbf{A} \leftarrow \mathbf{B}$, where \mathbf{A} and \mathbf{B} are queries.

The empty query is denoted by \Box . When **B** is empty, $H \leftarrow \mathbf{B}$ is written $H \leftarrow$ and is called a *unit clause*.

4 SLD derivations

1. Consider a non-empty query $\mathbf{A}, B, \mathbf{C}$ and a clause c. Let $H \leftarrow \mathbf{B}$ be a variant of c variable disjoint with $\mathbf{A}, B, \mathbf{C}$. Suppose that B and H unify. Let θ be an mgu of B and H.

Then $(\mathbf{A}, \mathbf{B}, \mathbf{C})\theta$ is called an *SLD-resolvent* of $\mathbf{A}, B, \mathbf{C}$ and *c* w.r.t. *B*, with an mgu θ . *B* is called the *selected atom* of $\mathbf{A}, B, \mathbf{C}$. We write then

$$\mathbf{A}, B, \mathbf{C} \stackrel{\theta}{\Longrightarrow} (\mathbf{A}, \mathbf{B}, \mathbf{C}) \theta$$

and call it an *SLD-derivation step*. $H \leftarrow \mathbf{B}$ is called its *input clause*. If the clause c is irrelevant we drop a reference to it.

- 2. A maximal sequence $Q_0 \xrightarrow[]{\theta_1} Q_1 \dots Q_n \xrightarrow[]{\theta_{n+1}} Q_{n+1} \dots$ of SLD-derivation steps is called an *SLD-derivation* of $P \cup \{Q_0\}$ if
 - $Q_0, \ldots, Q_{n+1}, \ldots$ are queries, each empty or with one atom selected in it,
 - $\theta_1, \ldots, \theta_{n+1}, \ldots$ are substitutions,
 - $c_1, \ldots, c_{n+1}, \ldots$ are clauses of P,

and for every step the following condition holds:

• Standardization apart: the input clause employed is variable disjoint from the initial query Q_0 and from the substitutions and the input clauses used at earlier steps. More formally:

$$Var(c'_i) \cap (Var(Q_0) \cup \bigcup_{j=1}^{i-1} (Var(\theta_j) \cup Var(c'_j))) = \emptyset$$

for $i \geq 1$, where c'_i is the input clause used in the step $Q_{i-1} \stackrel{\theta_i}{\longrightarrow} Q_i$.

If the program is clear from the context, we speak of an SLD-derivation of Q_0 and if the clauses $c_1, \ldots, c_{n+1}, \ldots$ are irrelevant we drop reference to them.

- 3. A clause is called *applicable* to an atom if a variant of its head unifies with the atom.
 - The *length* of an SLD-derivation is the number of SLD-derivation steps used in it. So an SLD-derivation of length 0 consists of a single query Q such that either Q is empty or no clause of the program is applicable to its selected atom.
- 4. Consider a finite SLD-derivation $\xi := Q_0 \xrightarrow{\theta_1} Q_1 \dots \xrightarrow{\theta_n} Q_n$ of a query $Q := Q_0$
 - ξ is called *successful* if $Q_n = \Box$. The restriction $(\theta_1 \dots \theta_n) | Var(Q)$ of the composition $\theta_1 \dots \theta_n$ to the variables of Q is called a *computed* answer substitution (*c.a.s.* in short) of Q and $Q\theta_1 \dots \theta_n$ is called a *computed* instance of Q.
 - ξ is called *failed* if Q_n is non-empty and no clause of P is applicable to the selected atom of Q_n .

5 Resultants

1. • Given an SLD-derivation step $Q \stackrel{\theta}{\Longrightarrow} Q_1$ we call $Q\theta \leftarrow Q_1$ the resultant associated with it.

Consider a resultant Q ← A, B, C and a clause c. Let H ← B be a variant of c variable disjoint with Q ← A, B, C and θ an mgu of B and H. Then (Q ← A, B, C)θ is called an SLD-resolvent of Q ← A, B, C and c w.r.t. B, with an mgu θ. B is called the selected atom of Q ← A, B, C.

We write then $(Q \leftarrow \mathbf{A}, B, \mathbf{C}) \stackrel{\theta}{\Longrightarrow} (Q \leftarrow \mathbf{A}, \mathbf{B}, \mathbf{C})\theta$ and call it an *SLD-resultant step.* $H \leftarrow \mathbf{B}$ is called its *input clause*. If the clause *c* is irrelevant we drop a reference to it.

2. Consider an SLD-derivation

$$Q_0 \xrightarrow[c_1]{e_1} Q_1 \dots Q_n \xrightarrow[c_{n+1}]{e_{n+1}} Q_{n+1} \dots$$

Let for $i \ge 0$

$$R_i := Q_0 \theta_1 \dots \theta_i \leftarrow Q_i$$

We call R_i the resultant of level *i* of the SLD-derivation $Q_0 \xrightarrow[c_1]{\theta_1} Q_1 \dots Q_n \xrightarrow[c_{n+1}]{\theta_{n+1}} Q_{n+1} \dots$

6 Properties of SLD-derivations

1. Consider an SLD-derivation

$$\xi := Q_0 \xrightarrow[c_1]{e_1} Q_1 \dots Q_n \xrightarrow[c_{n+1}]{e_{n+1}} Q_{n+1} \dots$$

We say that the SLD-derivation

$$\xi' := Q'_0 \xrightarrow[c_1]{d_1} Q'_1 \dots Q'_n \xrightarrow[c_{n+1}]{d_{n+1}} Q'_{n+1} \dots$$

is a *lift* of ξ if

- ξ is of the same or smaller length than ξ' ,
- Q_0 is an instance of Q'_0 ,
- for $i \ge 0$, in Q_i and Q'_i , atoms in the same positions are selected.
- 2. Consider two SLD-derivations:

$$\xi := Q_0 \xrightarrow[\sigma_1]{\theta_1} Q_1 \dots Q_n \xrightarrow[\sigma_{n+1}]{\theta_{n+1}} Q_{n+1} \dots$$

and

$$\xi' := Q'_0 \xrightarrow[c_1]{\theta'_1} Q'_1 \dots Q'_n \xrightarrow[c_{n+1}]{\theta'_{n+1}} Q'_{n+1} \dots$$

We say that ξ and ξ' are *similar* if

- ξ and ξ' are of the same length,
- Q_0 and Q'_0 are variants of each other,
- for $i \ge 0$, in Q_i and Q'_i , atoms in the same positions are selected.

7 Selection Rules

- 1. Let *INIT* stand for the set of initial fragments of SLD-derivations in which the last query is non-empty. By a *selection rule* \mathcal{R} we mean a function which, when applied to an element of *INIT* yields an occurrence of an atom in its last query.
 - Given a selection rule \mathcal{R} , we say that an SLD-derivation ξ is via \mathcal{R} if all choices of the selected atoms in ξ are performed according to \mathcal{R} . That is, for each initial fragment $\xi^{<}$ of ξ ending with a non-empty query Q, $\mathcal{R}(\xi^{<})$ is the selected atom of Q.

8 SLD-trees

- 1. An SLD-tree for $P \cup \{Q\}$ via a selection rule \mathcal{R} is a tree such that
 - its branches are SLD-derivations of $P \cup \{Q\}$ via \mathcal{R} ,
 - every node Q with selected atom A has exactly one descendant for every clause c from P which is applicable to A. This descendant is a resolvent of Q and c w.r.t. A.
- 2. We call an SLD-tree *successful* if it contains the empty query.
 - We call an SLD-tree *finitely failed* if it is finite and not successful.
- 3. We call a selection rule \mathcal{R} variant independent if in all initial fragments of SLD-derivations which are similar, \mathcal{R} chooses the atom in the same position in the last query.

9 Algebras

- 1. An algebra (sometimes called a preinterpretation) J for a language of terms \mathcal{L} consists of:
 - a non-empty set D, called the *domain* of J,
 - an assignment to each *n*-ary function symbol f in \mathcal{L} of a mapping f_J from D^n to D.
- 2. A valuation or state over the domain D is a mapping assigning each variable an element from D. Given now a state σ over D, we extend its domain to all terms, that is we assign a term t an element $\sigma(t)$ from D, proceeding by induction as follows:

•
$$\sigma(f(t_1,\ldots,t_n)) = f_J(\sigma(t_1),\ldots,\sigma(t_n)).$$

So $\sigma(f(t_1, \ldots, t_n))$ is the result of applying the mapping f_J to the sequence of values (already) associated by σ with the terms t_1, \ldots, t_n . Observe that for a constant c, we have $\sigma(c) = c_J$, so $\sigma(c)$ does not depend on σ .

10 Interpretations

- 1. An *interpretation I* for a language \mathcal{L} of programs consists of:
 - an algebra J with domain D
 - an assignment, to each *n*-ary relation symbol p in \mathcal{L} , of a subset p_I , of D^n .
- 2. We now define a relation $I \models_{\sigma} E$ between an interpretation I for \mathcal{L} , a state σ over the domain of I and an expression E. Intuitively, $I \models_{\sigma} E$ means that E is true when its variables are interpreted according to σ .
 - If $p(t_1, \ldots, t_n)$ is an atom, then $I \models_{\sigma} p(t_1, \ldots, t_n)$ iff $(\sigma(t_1), \ldots, \sigma(t_n)) \in p_I$,
 - if A_1, \ldots, A_n is a query, then $I \models_{\sigma} A_1, \ldots, A_n$ iff $I \models_{\sigma} A_i$ for $i \in [1, n]$,
 - if $\mathbf{A} \leftarrow \mathbf{B}$ is a resultant, then $I \models_{\sigma} \mathbf{A} \leftarrow \mathbf{B}$ iff $I \models_{\sigma} \mathbf{A}$ under the assumption of $I \models_{\sigma} \mathbf{B}$.

In particular, if $H \leftarrow \mathbf{B}$ is a clause, then

 $I \models_{\sigma} H \leftarrow \mathbf{B}$ iff $I \models_{\sigma} H$ under the assumption of $I \models_{\sigma} \mathbf{B}$,

and for a unit clause $H \leftarrow$

 $I \models_{\sigma} H \leftarrow \text{iff } I \models_{\sigma} H.$

Finally, we say that an expression E is true in the interpretation I and write $I \models E$, when for all states σ we have $I \models_{\sigma} E$.

11 Term Interpretations

- 1. Term Universe $TU_{\mathcal{L}}$ for the language of programs \mathcal{L} is the set of all terms of \mathcal{L} .
- 2. Term base $TB_{\mathcal{L}}$ is the set of atoms of L.
- 3. Term algebra for \mathcal{L} is defined as:
 - $TU_{\mathcal{L}}$ is the domain
 - If f is n-ary function symbol in \mathcal{L} then we assign to f a mapping $(TU_{\mathcal{L}})^n \to TU_{\mathcal{L}}$ which maps sequences (t_1, \ldots, t_n) to $f(t_1, \ldots, t_n)$
- 4. A term interpretation I for \mathcal{L} is an interpretation based on the term algebra for \mathcal{L}
- 5. A term interpretation I is a *term model* of a set of expressions S if I is a model of S.
- 6. A term interpretation I is closed under substitution if $A \in I$ implies $inst(A) \subseteq I$. For such I we have:

- $I = \{A \mid A \text{ is an atom and } I \models A\}$
- 7. A finite tree whose nodes are atoms, is called an *implication tree w.r.t.* P if for each of its nodes A with the direct descendants B_1, \ldots, B_n , the clause $A \leftarrow B_1, \ldots, B_n$ is in inst(P). In particular, for each leaf A the clause $A \leftarrow is$ in inst(P). We say that an atom has an *implication tree w.r.t.* P if it is the root of an implication tree w.r.t. P. An implication tree is called *ground* iff all its nodes are ground.

12 Completeness of the SLD-resolution

1. Given a program P and a query Q, we say that Q is *n*-deep if every atom in Q has an implication tree w.r.t. P and the total number of nodes in these implication trees is n.

13 Least Term Models

1. A term model of a set of expressions S is called the *least term model* of S if it is included in every term model of S.

14 Herbrand Interpretations

- 1. Herbrand Interpretation
 - $HU_{\mathcal{L}}$ set of all ground terms.
 - $HB_{\mathcal{L}}$ set of all ground atoms.
- 2. The Herbrand algebra J for \mathcal{L} is defined as follows:
 - its domain is the $HU_{\mathcal{L}}$,
 - if f is an n-ary function symbol, then $f_J: (HU_{\mathcal{L}})^n \to HU_{\mathcal{L}}$
- 3. A Herbrand interpretation I: every p (relation symbol) is assigned a set of ground terms.
 - $I := \{ p(t_1, \dots, t_n) \mid p \text{ is a } n \text{-ary relation symbol and } (t_1, \dots, t_n) \in p_I \}$