Definitions

Foundations of Logic Programming

(compiled by Ilina Stoilkovska and Isabel Juarez Castro)

1 Substitutions

1. A substitution is a finite mapping from variables to terms' which assigns
to each variable z in its domain a term t different from x. We write it as

{z1—t1,...,2, — t,} where
® r1,...,x, are different variables,
e t1,...,t, are terms,

o for i e [1,n],x; #t;.

A pair x; — t; is called a binding. When n = 0, the resulting substitution
is called empty substitution and is denoted by e.

2. Consider a substitution 8 = {zy — t1,..., 2, — t,}. W all ty,... ¢, are
ground, then 6 is called ground, and if all ¢, ...,t, are variables, then 6
is called a pure variable substitution. If € is a 1-1 and onto mapping from
its domain to itself, then 6 is called a renaming.

3. We denote by Dom(0) the set of variables {z1,...,z,}, by Ran(0) the set
of terms {t1,...,t,}, and by V Ran(6) the set of variables appearing in
t1,...,tn. Then we define Var(0) = Dom(0) UV Ran(6)

4. The term s is called an instance of s. An instance is called ground if it
contains no variables. If € is a renaming, then s is called a variant of s.

5. The composition of substitutions 6 and 7, written as 0n, is defined as
follows. We put for a variable x

z(6n) == (x0)n

LA substitution is then identified with the extension of such mapping to the mapping from
terms to terms.

Unifiers

. Let 6 and 7 be substitutions. We say that 6 is more general than 7 if for
some substitution 1 we have 7 = 0.

e 0 is called a unifier of s and t if s§ = t0. If a unifier of s and ¢ exists,
we say that s and t are unifiable.

e 0 is called a most general unifier (mgu in short) of s and ¢ if it is a
unifier of s and ¢ that is more general than all unifiers of s and ¢.

e An mgu 0 of s and ¢ is called strong if for all unifiers n of s and ¢ we
have n = 0n.
. A substitution @ is called idempotent if 66 = 6.

. 0 is a strong mgu iff for every unifier we have n = 6n

. A unifier 0 of s and ¢ is called relevant if Var(8) C Var(s) U Var(t).

Queries and Programs

. We define atoms, queries, clauses, programs and resultants as follows:

e if pis an n-ary relation symbol and t1, . . ., ¢, are terms then p(t1,...,t,)
is an atom,

e a query is a finite sequence of atoms,

e a clause is a construct of the form H < B, where H is an atom and
B is a query; H is called its head and B its body,

e a program is a finite set of clauses.

e a resultant is a construct of the form A < B, where A and B are
queries.

The empty query is denoted by [J. When B is empty, H < B is written
H < and is called a unit clause.

SLD derivations

. Consider a non-empty query A, B,C and a clause c. Let H < B be a
variant of ¢ variable disjoint with A, B, C. Suppose that B and H unify.
Let 6 be an mgu of B and H.

Then (A, B, C)0 is called an SLD-resolvent of A, B,C and ¢ w.r.t. B,
with an mgu 0. B is called the selected atom of A, B, C. We write then

A,B,C=% (A, B, C)f

and call it an SLD-derivation step. H < B is called its input clause. If
the clause c is irrelevant we drop a reference to it.

2. A maximal sequence Qg N Q...Q, — Ot == @p41 ... of SLD-derivation
C1 C

n+

steps is called an SLD-derivation of P U {QO} if

® Qo,...,Qnt1,... are queries, each empty or with one atom selected
in it,

e 01,...,0,41,... are substitutions,

® C1,...,Cpy1,... are clauses of P,

and for every step the following condition holds:

e Standardization apart: the input clause employed is variable dis-
joint from the initial query Q¢ and from the substitutions and the
input clauses used at earlier steps. More formally:

Var(c,) N (Var(Qo) U U (Var(8;) UVar(c;))) =0

for ¢ > 1, where ¢} is the input clause used in the step @Q;—1 N Q;.
¢

If the program is clear from the context, we speak of an SLD-derivation

of QQy and if the clauses cq,...,cnt1,... are irrelevant we drop reference
to them.
3. e A clause is called applicable to an atom if a variant of its head unifies

with the atom.

e The length of an SLD-derivation is the number of SLD-derivation
steps used in it. So an SLD-derivation of length 0 consists of a single
query @ such that either @ is empty or no clause of the program is
applicable to its selected atom.

4. Consider a finite SLD-derivation & := Qg N Q... N Q. of a query
Q:=Qo

o ¢ is called successful if Q, = 0. The restriction (0; ...0,)|Var(Q)
of the composition 6 ... 0, to the variables of Q) is called a computed
answer substitution (c.a.s. in short) of @ and Q6 ...0, is called a
computed instance of Q.

e ¢ is called failed if @, is non-empty and no clause of P is applicable
to the selected atom of @,,.
Resultants

1. e Given an SLD-derivation step @ N @1 we call Q8 < Q1 the resul-
tant associated with it.

e Consider a resultant @) < A, B,C and a clause c¢. Let H < B be
a variant of ¢ variable disjoint with @ + A, B,C and 6 an mgu
of B and H. Then (Q + A, B, C)0 is called an SLD-resolvent of
Q <+ A,B,C and c w.r.t. B, with an mgu 6. B is called the selected
atom of Q < A, B, C.

We write then (Q < A, B,C) =i> (Q «+ A, B, C)f and call it an

SLD-resultant step. H < B is called its input clause. If the clause c

is irrelevant we drop a reference to it.

2. Consider an SLD-derivation

0 0n
QO%QlQn:+1>Qn+1
1

Cn+1
Let fori >0
Ri = QO(‘)lGl «— Qz
We call R; the resultant of level i of the SLD-derivation Qg 2, Q1...Qn f"—'i>
C1 Cn41

Qnat ...

Properties of SLD-derivations

1. Consider an SLD-derivation

0 0
§=Q0=Q1...Qn == Qns1...
C1 Cn+1
We say that the SLD-derivation
I . N 91 / / 0;1-%—1 /
§i=Q = Q- @n === Qi -

is a lift of & if

e ¢ is of the same or smaller length than &',

e (o is an instance of @y,

e for i >0, in @; and @}, atoms in the same positions are selected.

2. Consider two SLD-derivations:

6 0
fI:Q0:1>Q1...an:H>Qn+1...
c1 Cn+1
and
/ P ’ ;O ,
13 ::QO?Ql...QnC:H>Qn+1...

We say that £ and & are similar if
e ¢ and & are of the same length,

e Qo and Q) are variants of each other,

e for i > 0, in @; and @}, atoms in the same positions are selected.

7

1.

Selection Rules

e Let INIT stand for the set of initial fragments of SLD-derivations in
which the last query is non-empty. By a selection rule R we mean
a function which, when applied to an element of INIT yields an
occurrence of an atom in its last query.

e Given a selection rule R, we say that an SLD-derivation £ is via R if
all choices of the selected atoms in £ are performed according to R.
That is, for each initial fragment £< of ¢ ending with a non-empty
query @, R(£<) is the selected atom of Q.

SLD-trees

. An SLD-tree for PU{Q} via a selection rule R is a tree such that

e its branches are SLD-derivations of P U {Q} via R,

every node Q with selected atom A has exactly one descendant for
every clause ¢ from P which is applicable to A. This descendant is a
resolvent of @ and ¢ w.r.t. A.

e We call an SLD-tree successful if it contains the empty query.

o We call an SLD-tree finitely failed if it is finite and not successful.

We call a selection rule R variant independent if in all initial fragments
of SLD-derivations which are similar, R chooses the atom in the same
position in the last query.

Algebras

. An algebra (sometimes called a preinterpretation) J for a language of

terms £ consists of:

e a non-empty set D, called the domain of J,

e an assignment to each n-ary function symbol f in £ of a mapping f;
from D" to D.

A waluation or state over the domain D is a mapping assigning each vari-
able an element from D. Given now a state o over D, we extend its
domain to all terms, that is we assign a term ¢ an element o(t) from D,
proceeding by induction as follows:

o o(f(try.. . tn)) = filo(tr),...,o(tn)).

Soo(f(ty,...,t,)) is the result of applying the mapping f; to the sequence
of values (already) associated by o with the terms ¢4, ...,t,. Observe that
for a constant ¢, we have o(c) = ¢y , so o(c) does not depend on o.

10 Interpretations

1. An interpretation I for a language L of programs consists of:

e an algebra J with domain D

e an assignment, to each n-ary relation symbol p in L, of a subset py,
of D™.

2. We now define a relation I =, E between an interpretation I for £, a
state o over the domain of I and an expression E. Intuitively, I =, E
means that F is true when its variables are interpreted according to o.

o If p(t1,...,t,) is an atom, then

I o p(t, ... ts) iff (0(t1),...,0(tn)) € D1,
e if Ay,..., A, is a query, then

I, Ay, A, T T =, A; for @ € [1,n],

e if A + B is a resultant, then
I'E, A« Biff I i, A under the assumption of I =, B.

In particular, if H < B is a clause, then
I =, H + Biff I =, H under the assumption of I =, B,
and for a unit clause H
IE, H+iff I, H.
Finally, we say that an expression F s true in the interpretation I and
write I = E, when for all states o we have I =, E.

11 Term Interpretations

1. Term Universe TU, for the language of programs L is the set of all terms
of L.

2. Term base T B is the set of atoms of L.
3. Term algebra for L is defined as:

e TU, is the domain
e If f is n-ary function symbol in £ then we assign to f a mapping
(TU.)™ = TU, which maps sequences (t1,...,t,) to f(t1,...,tn)

4. A term interpretation I for L is an interpretation based on the term alge-
bra for £

5. A term interpretation I is a term model of a set of expressions S if I is a
model of S.

6. A term interpretation I is closed under substitution if A € I implies
inst(A) C I. For such I we have:

12

13

14

e I={A] Aisan atom and I = A}

A finite tree whose nodes are atoms, is called an implication tree w.r.t.
P if for each of its nodes A with the direct descendants Bi,..., B,, the
clause A < Bji,..., B, is in inst(P). In particular, for each leaf A the
clause A < is in inst(P). We say that an atom has an implication tree
w.r.t. P if it is the root of an implication tree w.r.t. P. An implication
tree is called ground iff all its nodes are ground.

Completeness of the SLD-resolution
Given a program P and a query @, we say that) is n-deep if every atom

in @ has an implication tree w.r.t. P and the total number of nodes in
these implication trees is n.

Least Term Models

. A term model of a set of expressions S is called the least term model of S

if it is included in every term model of S.

Herbrand Interpretations

. Herbrand Interpretation

o HU/ set of all ground terms.

e H B/ set of all ground atoms.
The Herbrand algebra J for L is defined as follows:
e its domain is the HU,,
e if f is an n-ary function symbol, then f;: (HUz)" — HU,

A Herbrand interpretation I: every p (relation symbol) is assigned a set
of ground terms.

I:={p(t1,...,t,) | pis a n-ary relation symbol and (¢1,...,t,) € pr}

