
Definitions

Foundations of Logic Programming

(compiled by Ilina Stoilkovska and Isabel Juarez Castro)

1 Substitutions

1. A substitution is a finite mapping from variables to terms1 which assigns
to each variable x in its domain a term t different from x. We write it as
{x1 7→ t1, . . . , xn 7→ tn} where

• x1, . . . , xn are different variables,

• t1, . . . , tn are terms,

• for i ∈ [1, n], xi 6= ti.

A pair xi 7→ ti is called a binding. When n = 0, the resulting substitution
is called empty substitution and is denoted by ε.

2. Consider a substitution θ = {x1 7→ t1, . . . , xn 7→ tn}. If all t1, . . . , tn are
ground, then θ is called ground, and if all t1, . . . , tn are variables, then θ
is called a pure variable substitution. If θ is a 1-1 and onto mapping from
its domain to itself, then θ is called a renaming.

3. We denote by Dom(θ) the set of variables {x1, . . . , xn}, by Ran(θ) the set
of terms {t1, . . . , tn}, and by V Ran(θ) the set of variables appearing in
t1, . . . , tn. Then we define V ar(θ) = Dom(θ) ∪ V Ran(θ)

4. The term sθ is called an instance of s. An instance is called ground if it
contains no variables. If θ is a renaming, then sθ is called a variant of s.

5. The composition of substitutions θ and η, written as θη, is defined as
follows. We put for a variable x

x(θη) := (xθ)η

.

1A substitution is then identified with the extension of such mapping to the mapping from
terms to terms.

1

2 Unifiers

1. Let θ and τ be substitutions. We say that θ is more general than τ if for
some substitution η we have τ = θη.

2. • θ is called a unifier of s and t if sθ = tθ. If a unifier of s and t exists,
we say that s and t are unifiable.

• θ is called a most general unifier (mgu in short) of s and t if it is a
unifier of s and t that is more general than all unifiers of s and t.

• An mgu θ of s and t is called strong if for all unifiers η of s and t we
have η = θη.

3. A substitution θ is called idempotent if θθ = θ.

4. θ is a strong mgu iff for every unifier η we have η = θη

5. A unifier θ of s and t is called relevant if V ar(θ) ⊆ V ar(s) ∪ V ar(t).

3 Queries and Programs

1. We define atoms, queries, clauses, programs and resultants as follows:

• if p is an n-ary relation symbol and t1, . . . , tn are terms then p(t1, . . . , tn)
is an atom,

• a query is a finite sequence of atoms,

• a clause is a construct of the form H ← B, where H is an atom and
B is a query; H is called its head and B its body,

• a program is a finite set of clauses.

• a resultant is a construct of the form A ← B, where A and B are
queries.

The empty query is denoted by �. When B is empty, H ← B is written
H ← and is called a unit clause.

4 SLD derivations

1. Consider a non-empty query A, B,C and a clause c. Let H ← B be a
variant of c variable disjoint with A, B,C. Suppose that B and H unify.
Let θ be an mgu of B and H.
Then (A, B, C)θ is called an SLD-resolvent of A, B,C and c w.r.t. B,
with an mgu θ. B is called the selected atom of A, B,C. We write then

A, B,C
θ

==⇒
c

(A, B, C)θ

and call it an SLD-derivation step. H ← B is called its input clause. If
the clause c is irrelevant we drop a reference to it.

2

2. A maximal sequence Q0
θ1==⇒
c1

Q1 . . . Qn
θn+1

===⇒
cn+1

Qn+1 . . . of SLD-derivation

steps is called an SLD-derivation of P ∪ {Q0} if

• Q0, . . . , Qn+1, . . . are queries, each empty or with one atom selected
in it,

• θ1, . . . , θn+1, . . . are substitutions,

• c1, . . . , cn+1, . . . are clauses of P ,

and for every step the following condition holds:

• Standardization apart: the input clause employed is variable dis-
joint from the initial query Q0 and from the substitutions and the
input clauses used at earlier steps. More formally:

V ar(c′i) ∩ (V ar(Q0) ∪
i−1⋃
j=1

(V ar(θj) ∪ V ar(c′j))) = ∅

for i ≥ 1, where c′i is the input clause used in the step Qi−1
θi==⇒
ci

Qi.

If the program is clear from the context, we speak of an SLD-derivation
of Q0 and if the clauses c1, . . . , cn+1, . . . are irrelevant we drop reference
to them.

3. • A clause is called applicable to an atom if a variant of its head unifies
with the atom.

• The length of an SLD-derivation is the number of SLD-derivation
steps used in it. So an SLD-derivation of length 0 consists of a single
query Q such that either Q is empty or no clause of the program is
applicable to its selected atom.

4. Consider a finite SLD-derivation ξ := Q0
θ1==⇒ Q1 . . .

θn==⇒ Qn of a query
Q := Q0

• ξ is called successful if Qn = �. The restriction (θ1 . . . θn) |V ar(Q)
of the composition θ1 . . . θn to the variables of Q is called a computed
answer substitution (c.a.s. in short) of Q and Qθ1 . . . θn is called a
computed instance of Q.

• ξ is called failed if Qn is non-empty and no clause of P is applicable
to the selected atom of Qn.

5 Resultants

1. • Given an SLD-derivation step Q
θ

==⇒ Q1 we call Qθ ← Q1 the resul-
tant associated with it.

3

• Consider a resultant Q ← A, B,C and a clause c. Let H ← B be
a variant of c variable disjoint with Q ← A, B,C and θ an mgu
of B and H. Then (Q ← A, B, C)θ is called an SLD-resolvent of
Q← A, B,C and c w.r.t. B, with an mgu θ. B is called the selected
atom of Q← A, B,C.

We write then (Q ← A, B,C)
θ

==⇒
c

(Q ← A, B, C)θ and call it an

SLD-resultant step. H ← B is called its input clause. If the clause c
is irrelevant we drop a reference to it.

2. Consider an SLD-derivation

Q0
θ1==⇒
c1

Q1 . . . Qn
θn+1

===⇒
cn+1

Qn+1 . . .

Let for i ≥ 0
Ri := Q0θ1 . . . θi ← Qi

We callRi the resultant of level i of the SLD-derivationQ0
θ1==⇒
c1

Q1 . . . Qn
θn+1

===⇒
cn+1

Qn+1 . . .

6 Properties of SLD-derivations

1. Consider an SLD-derivation

ξ := Q0
θ1==⇒
c1

Q1 . . . Qn
θn+1

===⇒
cn+1

Qn+1 . . .

We say that the SLD-derivation

ξ′ := Q′0
θ′1==⇒
c1

Q′1 . . . Q
′
n

θ′n+1
===⇒
cn+1

Q′n+1 . . .

is a lift of ξ if

• ξ is of the same or smaller length than ξ′,

• Q0 is an instance of Q′0,

• for i ≥ 0, in Qi and Q′i, atoms in the same positions are selected.

2. Consider two SLD-derivations:

ξ := Q0
θ1==⇒
c1

Q1 . . . Qn
θn+1

===⇒
cn+1

Qn+1 . . .

and

ξ′ := Q′0
θ′1==⇒
c1

Q′1 . . . Q
′
n

θ′n+1
===⇒
cn+1

Q′n+1 . . .

We say that ξ and ξ′ are similar if

• ξ and ξ′ are of the same length,

• Q0 and Q′0 are variants of each other,

• for i ≥ 0, in Qi and Q′i, atoms in the same positions are selected.

4

7 Selection Rules

1. • Let INIT stand for the set of initial fragments of SLD-derivations in
which the last query is non-empty. By a selection rule R we mean
a function which, when applied to an element of INIT yields an
occurrence of an atom in its last query.

• Given a selection rule R, we say that an SLD-derivation ξ is via R if
all choices of the selected atoms in ξ are performed according to R.
That is, for each initial fragment ξ< of ξ ending with a non-empty
query Q, R(ξ<) is the selected atom of Q.

8 SLD-trees

1. An SLD-tree for P ∪ {Q} via a selection rule R is a tree such that

• its branches are SLD-derivations of P ∪ {Q} via R,

• every node Q with selected atom A has exactly one descendant for
every clause c from P which is applicable to A. This descendant is a
resolvent of Q and c w.r.t. A.

2. • We call an SLD-tree successful if it contains the empty query.

• We call an SLD-tree finitely failed if it is finite and not successful.

3. We call a selection rule R variant independent if in all initial fragments
of SLD-derivations which are similar, R chooses the atom in the same
position in the last query.

9 Algebras

1. An algebra (sometimes called a preinterpretation) J for a language of
terms L consists of:

• a non-empty set D, called the domain of J ,

• an assignment to each n-ary function symbol f in L of a mapping fJ
from Dn to D.

2. A valuation or state over the domain D is a mapping assigning each vari-
able an element from D. Given now a state σ over D, we extend its
domain to all terms, that is we assign a term t an element σ(t) from D,
proceeding by induction as follows:

• σ(f(t1, . . . , tn)) = fJ(σ(t1), . . . , σ(tn)).

So σ(f(t1, . . . , tn)) is the result of applying the mapping fJ to the sequence
of values (already) associated by σ with the terms t1, . . . , tn. Observe that
for a constant c, we have σ(c) = cJ , so σ(c) does not depend on σ.

5

10 Interpretations

1. An interpretation I for a language L of programs consists of:

• an algebra J with domain D

• an assignment, to each n-ary relation symbol p in L, of a subset pI ,
of Dn.

2. We now define a relation I |=σ E between an interpretation I for L, a
state σ over the domain of I and an expression E. Intuitively, I |=σ E
means that E is true when its variables are interpreted according to σ.

• If p(t1, . . . , tn) is an atom, then
I |=σ p(t1, . . . , tn) iff (σ(t1), . . . , σ(tn)) ∈ pI ,

• if A1, . . . , An is a query, then
I |=σ A1, . . . , An iff I |=σ Ai for i ∈ [1, n],

• if A← B is a resultant, then
I |=σ A← B iff I |=σ A under the assumption of I |=σ B.

In particular, if H ← B is a clause, then
I |=σ H ← B iff I |=σ H under the assumption of I |=σ B,

and for a unit clause H ←
I |=σ H ← iff I |=σ H.

Finally, we say that an expression E is true in the interpretation I and
write I |= E, when for all states σ we have I |=σ E.

11 Term Interpretations

1. Term Universe TUL for the language of programs L is the set of all terms
of L.

2. Term base TBL is the set of atoms of L.

3. Term algebra for L is defined as:

• TUL is the domain

• If f is n-ary function symbol in L then we assign to f a mapping
(TUL)n → TUL which maps sequences (t1, . . . , tn) to f(t1, . . . , tn)

4. A term interpretation I for L is an interpretation based on the term alge-
bra for L

5. A term interpretation I is a term model of a set of expressions S if I is a
model of S.

6. A term interpretation I is closed under substitution if A ∈ I implies
inst(A) ⊆ I. For such I we have:

6

• I = {A | A is an atom and I |= A}

7. A finite tree whose nodes are atoms, is called an implication tree w.r.t.
P if for each of its nodes A with the direct descendants B1, . . . , Bn, the
clause A ← B1, . . . , Bn is in inst(P). In particular, for each leaf A the
clause A ← is in inst(P). We say that an atom has an implication tree
w.r.t. P if it is the root of an implication tree w.r.t. P . An implication
tree is called ground iff all its nodes are ground.

12 Completeness of the SLD-resolution

1. Given a program P and a query Q, we say that Q is n-deep if every atom
in Q has an implication tree w.r.t. P and the total number of nodes in
these implication trees is n.

13 Least Term Models

1. A term model of a set of expressions S is called the least term model of S
if it is included in every term model of S.

14 Herbrand Interpretations

1. Herbrand Interpretation

• HUL set of all ground terms.

• HBL set of all ground atoms.

2. The Herbrand algebra J for L is defined as follows:

• its domain is the HUL,

• if f is an n-ary function symbol, then fJ : (HUL)n → HUL

3. A Herbrand interpretation I: every p (relation symbol) is assigned a set
of ground terms.

I := {p(t1, . . . , tn) | p is a n-ary relation symbol and (t1, . . . , tn) ∈ pI}

7

