Lemmas and theorems

Foundations of Logic Programming

January 29, 2013

1 Subsitutions

1. We say that a substitution γ is a renaming if γ is 1-1 and onto mapping from its domain to itself (i.e. a *permutation* of the domain).

Prove that for every renaming θ there exists only one substitution θ^{-1} such that $\theta\theta^{-1} = \theta^{-1}\theta = \epsilon$. Prove that θ^{-1} is a renaming of θ .

- 2. s is called an *instance* of t if $s = t\sigma$ for a substitution σ . Prove that s is a variant of t iff s is an instance of t and t is an instance of s.
- 3. Renaming Lemma: $\theta \leq \eta$ and $\eta \leq \theta$ iff there is γ a renaming of θ such that, $\eta = \theta \gamma$.

2 Unification

- 1. Binding Lemma: For a variable x and a term t, $x\theta = t\theta$ iff $\theta = \{x \mapsto t\}\theta$.
- 2. Solved Form Lemma: If $E := \{x_1 = t_1, \dots, x_n = t_n\}$ is solved, then the substitution $\theta := \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ is an mgu of E. θ is idempotent.
- 3. Prove that for each $n \ge 1$, \succ_n (lexicographic ordering defined on *n*-tuples of natural numbers) is a well-founded order.
- 4. The Martelli-Montanari algorithm always terminates.
- 5. Each step of the Martelli-Montanari algorithm replaces the set of equations by an equivalent one.
- 6. If the Martelli-Montanari algorithm terminates with success, then the final set of equations is solved.
- 7. If the Martelli-Montanari algorithm terminates with failure, then the set of equations at the moment of failure does not have a unifier.

- 8. Unification Theorem (correctness of the Martelli-Montanari algorithm): The Martelli-Montanari algorithm always terminates. If the original set of equations E has a unifier, then the algorithm terminates with success and produces a solved set of equations determining an mgu of E. Otherwise it terminates with failure.
- 9. Idempotence Theorem: An mgu is strong iff it is idempotent.
- 10. A substitution θ is idempotent iff $Dom(\theta) \cap VRan(\theta) = \emptyset$, where $VRan(\theta)$ is the set of variables in the range of θ .
- 11. Suppose that θ and η are idempotent substitutions such that $Dom(\theta) \cap VRan(\eta) = \emptyset$. Prove that $\theta\eta$ is idempotent.
- 12. Equivalence Lemma: Let θ_1 be an mgu of a set of equations E. Then for every substitution θ_2 , θ_2 is an mgu of E iff $\theta_2 = \theta_1 \gamma$ for a renaming γ .
- 13. Relevance Theorem: Every idempotent mgu is relevant.
- 14. Iteration Lemma: Let E_1, E_2 be two sets of equations. Suppose that θ_1 is an mgu of E_1 and θ_2 an mgu of $E_2\theta_1$. Then $\theta_1\theta_2$ is an mgu of $E_1 \cup E_2$. Moreover if $E_1 \cup E_2$, then an mgu θ_1 of E_1 exists and for any mgu θ_1 of E_1 , an mgu θ_2 of $E_2\theta_1$ exists.
- 15. Switching Corollary (corollary to Iteration Lemma): Let E_1, E_2 be two sets of equations. Suppose that θ_1 is an mgu of E_1 and θ_2 an mgu of $E_2\theta_1$. Then E_2 is unifiable and for every mgu θ'_1 of E_2 there is an mgu θ'_2 of $E_1\theta'_1$ such that $\theta_1\theta_2 = \theta'_1\theta'_2$ and $Var(\theta'_2) \subseteq Var(E_1) \cup Var(\theta'_1) \cup Var(\theta_1\theta_2)$.

3 SLD-derivations

- 1. **Disjointness Lemma**: Consider an SLD-derivation of $P \cup \{Q\}$ with the sequence d_1, \ldots, d_n, \ldots of input clauses used and with the sequence of R_0, \ldots, R_n, \ldots of resultants associated with it. Then for $i \ge 0$, $Var(R_i) \cap Var(R_{i+1}) = \emptyset$.
- 2. **Propagation Lemma**: Suppose that $R \Rightarrow_c^{\theta} R_1$ and $R' \Rightarrow_c^{\theta'} R'_1$ are two SLD-resultant steps such that
 - R is an instance of R'
 - in R and R' atoms in the same positions are selected.

Then R_1 is an instance of R'_1 .

- 3. **Propagation Corollary**: Suppose that $Q \Rightarrow_c^{\theta} Q_1$ and $Q' \Rightarrow_c^{\theta'} Q'_1$ are two SLD-derivation steps such that
 - Q is an instance of Q'
 - in Q and Q' atoms in the same positions are selected.

Then Q_1 is an instance of Q'_1 .

- 4. Instance Theorem: Consider an SLD-derivation ξ and its lift ξ' . Then for $i \geq 0$, if the resultant R_i of level i of ξ exists, then so does the resultant R'_i of level i of ξ' and R_i is an instance of R'_i .
- 5. Variant Theorem: Consider two similar SLD-derivations. Then for $i \ge 0$ their resultants of level i are variants of each other.
- 6. Variant Corollary: Consider two similar SLD-derivations of Q with c.a.s.s θ and η . Then $Q\theta$ and $Q\eta$ are variants of each other.
- 7. Selection Note: Every SLD-derivation is via selection rule.
- 8. Switching Lemma: Consider a query Q_n with two different atoms A_1 and A_2 . Suppose that

 $\xi := Q_0 \Rightarrow_{c_1}^{\theta_1} Q_1 \dots Q_n \Rightarrow_{c_{n+1}}^{\theta_{n+1}} Q_{n+1} \Rightarrow_{c_{n+2}}^{\theta_{n+2}} Q_{n+2} \dots$ is an SLD-derivation where:

- A_1 is the selected atom of Q_n ,
- $A_2\theta_{n+1}$ is the selected atom of Q_{n+1} .

Then for some $Q'_{n+1}, \theta'_{n+1}, \theta'_{n+2}$:

- $\theta'_{n+1}\theta'_{n+2} = \theta_{n+1}\theta_{n+2}$
- there exists an SLD-derivation: $\xi' := Q_0 \Rightarrow_{c_1}^{\theta_1} Q_1 \dots Q_n \Rightarrow_{c_{n+2}}^{\theta'_{n+1}} Q_{n+1} \Rightarrow_{c_{n+1}}^{\theta_{n'+2}} Q_{n+2} \dots$ where
 - $-\xi$ and ξ' coincide up to the resolvent Q_n ,
 - $-A_2$ is the selected atom in Q_n
 - $-A_1\theta'_{n+1}$ is the selected atom in Q'_{n+1} ,
 - $-\xi$ and ξ' conicide after the resolvent Q_{n+2} .
- 9. Independence Theorem: For every successful SLD-derivation ξ of $P \cup \{Q\}$ and a selection rule R, there exists a successful SLD-derivation ξ' of $P \cup \{Q\}$ via R such that:
 - the c.a.s.s of ξ and ξ' are the same,
 - ξ and ξ' are of the same length.
- 10. Every SLD-tree is via a variant independent selection rule.
- 11. **Branch Theorem**: Consider an SLD-tree \mathcal{T} for $P \cup \{Q\}$ via a variant independent selection rule R. Then every SLD-derivation of $P \cup \{Q\}$ via R is similar to a branch of \mathcal{T} .
- 12. Independence Corollary: If an SLD-tree for $P \cup \{Q\}$ is successful, then all SLD-trees for $P \cup \{Q\}$ are successful.

4 Soundness and Completeness of SLD-resolution

1. Resultant Lemma

- (a) Let $Q \Rightarrow_c^{\theta} Q_1$ be an SLD-derivation step and r the resultant associated with it. Then $c \models r$.
- (b) Consider an SLD-derivation of $P \cup \{Q\}$ with the sequence R_0, \ldots, R_n, \ldots of resultants associated with it. Then for all $i \ge 0$ $P \models R_i$.
- 2. Soundness of SLD-resolution (theorem). Suppose that there exists a successful SLD-derivation of $P \cup \{Q\}$ with c.a.s. θ . Then $P \models Q\theta$.
- 3. Soundness of SLD-resolution (corollary). Suppose that there exists a successful SLD-derivation of $P \cup \{Q\}$. Then $P \models \exists Q$.
- 4. Term Interpretation Lemma. Let I be a term interpretation. Then
 - (a) for an atom A and a valuation (state) σ , $I \models_{\sigma} A$ iff $A(\sigma | Var(A)) \in I$,
 - (b) for an atom $A, I \models A$ iff $inst(A) \subseteq I$,
 - (c) for a clause $c, I \models c$ iff for all $A \leftarrow B_1, \ldots, B_n$ in $inst(c), \{B_1, \ldots, B_n\} \subseteq I$ implies $A \in I$
- 5. Substitution Closure Note. For a term interpretation I closed under substitution, $I \models \exists Q$ implies that for some substitution θ , $I \models Q\theta$.
- 6. C(P) Lemma. The term interpretation $C(P) := \{A \mid A \text{ has an implication tree w.r.t.} P\}$ is a model of P.
- 7. Prove that C(P) is closed under substitution.
- 8. Implication Tree Lemma. Suppose that $Q\theta$ is *n*-deep for some $n \ge 0$. Then for every selection rule *R* there exists a successful SLD-derivation of $P \cup \{Q\}$ via *R* with the c.a.s. η such that $Q\eta$ is more general than $Q\theta$.
- 9. Strong Completeness of SLD-resolution Theorem. Suppose that $P \models Q\theta$. Then for every selection rule R there exists a successful SLD-derivation of $P \cup \{Q\}$ via R with the c.a.s. η such that $Q\eta$ is more general than $Q\theta$.
- 10. Completeness Corollary. Suppose that $P \models \exists Q$. Then there exists a successful SLD-derivation of $P \cup \{Q\}$.