
Institute of Theoretical Computer Science Chair of Automata Theory

TEMPORAL

QUERY ANSWERING

IN DL-LITE

Stefan Borgwardt Marcel Lippmann Veronika Thost

Ulm, July 24, 2013

Institute of Theoretical Computer Science Chair of Automata Theory

TEMPORAL

QUERY ANSWERING IN DL-LITE

Stefan Borgwardt Marcel Lippmann Veronika Thost

Ulm, July 24, 2013

Institute of Theoretical Computer Science Chair of Automata Theory

TEMPORAL QUERY ANSWERING IN DL-LITE

Stefan Borgwardt Marcel Lippmann Veronika Thost

Ulm, July 24, 2013

Situation awareness

system database

SQL query

SQL engine

TBox T

critical situations

• incomplete knowledge

• background knowledge

• rewrite ψ w.r.t. T (possibly exponential)

• Cert(ψ, 〈A, T 〉) = Ans(ψT , DB(A))

}
OBDA

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 2

Situation awareness

system database

SQL query

SQL engine

TBox T

critical situations

• incomplete knowledge

• background knowledge

• rewrite ψ w.r.t. T (possibly exponential)

• Cert(ψ, 〈A, T 〉) = Ans(ψT , DB(A))

}
OBDA

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 2

Situation awareness

system database

SQL query

SQL engine

TBox T

critical situations

• incomplete knowledge

• background knowledge

• rewrite ψ w.r.t. T (possibly exponential)

• Cert(ψ, 〈A, T 〉) = Ans(ψT , DB(A))

}
OBDA

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 2

Situation awareness

system ABox A

conjunctive query (CQ) ψ

DL reasoner

TBox T

critical situations

• incomplete knowledge

• background knowledge

• rewrite ψ w.r.t. T (possibly exponential)

• Cert(ψ, 〈A, T 〉) = Ans(ψT , DB(A))

}
OBDA

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 2

Situation awareness

system ABox A

conjunctive query (CQ) ψ

DL reasoner

TBox T

critical situations
Cert(ψ, 〈A, T 〉)

• incomplete knowledge

• background knowledge

• rewrite ψ w.r.t. T (possibly exponential)

• Cert(ψ, 〈A, T 〉) = Ans(ψT , DB(A))

}
OBDA

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 2

Situation awareness

system database DB(A)

SQL query ψT

SQL engine

TBox T

critical situations
Ans(ψT , DB(A))

• incomplete knowledge

• background knowledge

• rewrite ψ w.r.t. T (possibly exponential)

• Cert(ψ, 〈A, T 〉) = Ans(ψT , DB(A))

}
OBDA

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 2

DL-Litecore

• concept names: Employee, Manager, Unemployed

• role names: manages

• concept inclusions: ∃manages v Manager, ∃manages− v Employee,
Employee v ∃manages−, Employee v ¬Unemployed

• assertions: manages(franz, stefan)

franz

Manager

stefan

Employee

manages

x

Manager

manages

• conjunctive query: Manager(x)? ; {[x 7→ franz]}
• first-order rewriting:
ψ = Manager(x)
; ψT = Manager(x) ∨ ∃y.manages(x, y)
; (SELECT * FROM Manager) UNION (SELECT first FROM manages)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 3

DL-Litecore

• concept names: Employee, Manager, Unemployed

• role names: manages

• concept inclusions: ∃manages v Manager, ∃manages− v Employee,
Employee v ∃manages−, Employee v ¬Unemployed

• assertions: manages(franz, stefan)

franz

Manager

stefan

Employee

manages

x

Manager

manages

• conjunctive query: Manager(x)? ; {[x 7→ franz]}
• first-order rewriting:
ψ = Manager(x)
; ψT = Manager(x) ∨ ∃y.manages(x, y)
; (SELECT * FROM Manager) UNION (SELECT first FROM manages)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 3

DL-Litecore

• concept names: Employee, Manager, Unemployed

• role names: manages

• concept inclusions: ∃manages v Manager, ∃manages− v Employee,
Employee v ∃manages−, Employee v ¬Unemployed

• assertions: manages(franz, stefan)

franz

Manager

stefan

Employee

manages

x

Manager

manages

• conjunctive query: Manager(x)? ; {[x 7→ franz]}
• first-order rewriting:
ψ = Manager(x)
; ψT = Manager(x) ∨ ∃y.manages(x, y)
; (SELECT * FROM Manager) UNION (SELECT first FROM manages)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 3

DL-Litecore

• concept names: Employee, Manager, Unemployed

• role names: manages

• concept inclusions: ∃manages v Manager, ∃manages− v Employee,
Employee v ∃manages−, Employee v ¬Unemployed

• assertions: manages(franz, stefan)

franz

Manager

stefan

Employee

manages x

Manager

manages

• conjunctive query: Manager(x)? ; {[x 7→ franz]}
• first-order rewriting:
ψ = Manager(x)
; ψT = Manager(x) ∨ ∃y.manages(x, y)
; (SELECT * FROM Manager) UNION (SELECT first FROM manages)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 3

DL-Litecore

• concept names: Employee, Manager, Unemployed

• role names: manages

• concept inclusions: ∃manages v Manager, ∃manages− v Employee,
Employee v ∃manages−, Employee v ¬Unemployed

• assertions: manages(franz, stefan)

franz

Manager

stefan

Employee

manages x

Manager

manages

• conjunctive query: Manager(x)? ; {[x 7→ franz]}

• first-order rewriting:
ψ = Manager(x)
; ψT = Manager(x) ∨ ∃y.manages(x, y)
; (SELECT * FROM Manager) UNION (SELECT first FROM manages)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 3

DL-Litecore

• concept names: Employee, Manager, Unemployed

• role names: manages

• concept inclusions: ∃manages v Manager, ∃manages− v Employee,
Employee v ∃manages−, Employee v ¬Unemployed

• assertions: manages(franz, stefan)

franz

Manager

stefan

Employee

manages x

Manager

manages

• conjunctive query: Manager(x)? ; {[x 7→ franz]}
• first-order rewriting:
ψ = Manager(x)
; ψT = Manager(x) ∨ ∃y.manages(x, y)

; (SELECT * FROM Manager) UNION (SELECT first FROM manages)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 3

DL-Litecore

• concept names: Employee, Manager, Unemployed

• role names: manages

• concept inclusions: ∃manages v Manager, ∃manages− v Employee,
Employee v ∃manages−, Employee v ¬Unemployed

• assertions: manages(franz, stefan)

franz

Manager

stefan

Employee

manages x

Manager

manages

• conjunctive query: Manager(x)? ; {[x 7→ franz]}
• first-order rewriting:
ψ = Manager(x)
; ψT = Manager(x) ∨ ∃y.manages(x, y)
; (SELECT * FROM Manager) UNION (SELECT first FROM manages)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 3

Dynamic systems

system ABox A

conjunctive query ψ

DL reasoner

TBox T

critical situations
Cert(ψ, 〈A, T 〉)

• temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉
• sequences of interpretations (Ii)0≤i≤n

– shared domain
– rigid individuals

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 4

Dynamic systems

system sequence of ABoxes

temporal CQ φ

?

TBox T

critical situations
Cert(φ,K, n)

• temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉

• sequences of interpretations (Ii)0≤i≤n

– shared domain
– rigid individuals

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 4

Dynamic systems

system sequence of ABoxes

temporal CQ φ

?

TBox T

critical situations
Cert(φ,K, n)

• temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉
• sequences of interpretations (Ii)0≤i≤n

– shared domain
– rigid individuals

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 4

Dynamic systems

system sequence of databases?

temporal SQL query φT ?

?

TBox T

critical situations
Ans(φT , DB(K), n)

• temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉
• sequences of interpretations (Ii)0≤i≤n

– shared domain
– rigid individuals

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 4

Temporal conjunctive queries (TCQs)

φ := ψ | φ1 ∧ φ2 | φ1 ∨ φ2 | #φ | •φ | φ1 Uφ2 | 2φ | 3φ |

#−φ | •−φ | φ1 Sφ2 | 2−φ | 3−φ

• LTL-based syntax, as in [Gutiérrez-Basulto, Klarman 2012] and
[Baader, Borgwardt, Lippmann 2013]

• past and future operators, no negation

Unemployed(x) ∧#−Employee(x)

2−Employee(x)

#−103(Overheated(x) ∧#3Overheated(x))

Cert(φ,K, n) = Ans(φT , DB(K), n)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 5

Temporal conjunctive queries (TCQs)

φ := ψ | φ1 ∧ φ2 | φ1 ∨ φ2 | #φ | •φ | φ1 Uφ2 | 2φ | 3φ |

#−φ | •−φ | φ1 Sφ2 | 2−φ | 3−φ

• LTL-based syntax, as in [Gutiérrez-Basulto, Klarman 2012] and
[Baader, Borgwardt, Lippmann 2013]

• past and future operators, no negation

Unemployed(x) ∧#−Employee(x)

2−Employee(x)

#−103(Overheated(x) ∧#3Overheated(x))

Cert(φ,K, n) = Ans(φT , DB(K), n)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 5

Temporal conjunctive queries (TCQs)

φ := ψ | φ1 ∧ φ2 | φ1 ∨ φ2 | #φ | •φ | φ1 Uφ2 | 2φ | 3φ |

#−φ | •−φ | φ1 Sφ2 | 2−φ | 3−φ

• LTL-based syntax, as in [Gutiérrez-Basulto, Klarman 2012] and
[Baader, Borgwardt, Lippmann 2013]

• past and future operators, no negation

Unemployed(x) ∧#−Employee(x)

2−Employee(x)

#−103(Overheated(x) ∧#3Overheated(x))

Cert(φ,K, n) = Ans(φT , DB(K), n)

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 5

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)}

{a} ∅ {a} {b} {a}

1
{Started(b),
Running(a)}

{b} {a} {b} ∅ {a, b}

2 {Running(b)}

∅ {b} ∅ ∅ {b}

3 ∅

∅ ∅ ∅ {a, b} {b}

4 ∅

∅ ∅ {a, b} {a, b} {b}

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)}

{a} ∅ {a} {b} {a}

1
{Started(b),
Running(a)}

{b} {a} {b} ∅ {a, b}

2 {Running(b)}

∅ {b} ∅ ∅ {b}

3 ∅

∅ ∅ ∅ {a, b} {b}

4 ∅

∅ ∅ {a, b} {a, b} {b}

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)}

{a} ∅ {a} {b} {a}

1
{Started(b),
Running(a)}

{b} {a} {b} ∅ {a, b}

2 {Running(b)}

∅ {b} ∅ ∅ {b}

3 ∅

∅ ∅ ∅ {a, b} {b}

4 ∅

∅ ∅ {a, b} {a, b} {b}

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)} {a} ∅

{a} {b} {a}

1
{Started(b),
Running(a)} {b} {a}

{b} ∅ {a, b}

2 {Running(b)} ∅ {b}

∅ ∅ {b}

3 ∅ ∅ ∅

∅ {a, b} {b}

4 ∅ ∅ ∅

{a, b} {a, b} {b}

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)} {a} ∅ {a}

{b} {a}

1
{Started(b),
Running(a)} {b} {a} {b}

∅ {a, b}

2 {Running(b)} ∅ {b} ∅

∅ {b}

3 ∅ ∅ ∅ ∅

{a, b} {b}

4 ∅ ∅ ∅ {a, b}

{a, b} {b}

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)} {a} ∅ {a} {b}

{a}

1
{Started(b),
Running(a)} {b} {a} {b} ∅

{a, b}

2 {Running(b)} ∅ {b} ∅ ∅

{b}

3 ∅ ∅ ∅ ∅ {a, b}

{b}

4 ∅ ∅ ∅ {a, b} {a, b}

{b}

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)} {a} ∅ {a} {b} {a}

1
{Started(b),
Running(a)} {b} {a} {b} ∅ {a, b}

2 {Running(b)} ∅ {b} ∅ ∅ {b}
3 ∅ ∅ ∅ ∅ {a, b} {b}
4 ∅ ∅ ∅ {a, b} {a, b} {b}

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)} {a} ∅ {a} {b} {a}

1
{Started(b),
Running(a)} {b} {a} {b} ∅ {a, b}

2 {Running(b)} ∅ {b} ∅ ∅ {b}
3 ∅ ∅ ∅ ∅ ∅ ∅
4 ∅ ∅ ∅ ∅ {a, b} ∅

5 ∅ ∅ ∅ {a, b} {a, b} ∅

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

Semantics of TCQs

φ = (Running(x) ∨•Running(x) ∨••Running(x))SStarted(x)

“all processes that have never been inactive
for three consecutive time points since they were started”

ψ1 Sψ2 ≡ ψ2 ∨ (ψ1 ∧#−(ψ1 Sψ2))

i Ai Started(x) Running(x) •Running(x) ••Running(x) φ

0 {Started(a)} {a} ∅ {a} {b} {a}

1
{Started(b),
Running(a)} {b} {a} {b} ∅ {a, b}

2 {Running(b)} ∅ {b} ∅ ∅ {b}
3 ∅ ∅ ∅ ∅ ∅ ∅
4 ∅ ∅ ∅ ∅ {a, b} ∅

5 ∅ ∅ ∅ {a, b} {a, b} ∅

→ store all past data in a temporal database and use a temporal query language, e.g. ATSQL
[Chomicki, Toman, Böhlen 2001]

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 6

A space efficient approach

• query is fixed and always evaluated at the last time point

• idea: discard irrelevant data from past time points

• [Chomicki 1995]:
– keep only answers to past-subformulae from the previous time point
– update those in each step
– does not work with future operators

φ = 2−Employee(x)

2−ψ ≡ ψ ∧•−2−ψ

bounded history encoding: required space independent of the length of the history

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 7

A space efficient approach

• query is fixed and always evaluated at the last time point

• idea: discard irrelevant data from past time points

• [Chomicki 1995]:
– keep only answers to past-subformulae from the previous time point
– update those in each step
– does not work with future operators

φ = 2−Employee(x)

2−ψ ≡ ψ ∧•−2−ψ

bounded history encoding: required space independent of the length of the history

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 7

A space efficient approach

• query is fixed and always evaluated at the last time point

• idea: discard irrelevant data from past time points

• [Chomicki 1995]:
– keep only answers to past-subformulae from the previous time point
– update those in each step
– does not work with future operators

φ = 2−Employee(x)

2−ψ ≡ ψ ∧•−2−ψ

bounded history encoding: required space independent of the length of the history

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 7

A space efficient approach

• query is fixed and always evaluated at the last time point

• idea: discard irrelevant data from past time points

• [Chomicki 1995]:
– keep only answers to past-subformulae from the previous time point
– update those in each step
– does not work with future operators

φ = 2−Employee(x)

2−ψ ≡ ψ ∧•−2−ψ

bounded history encoding: required space independent of the length of the history

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 7

A space efficient approach

• query is fixed and always evaluated at the last time point

• idea: discard irrelevant data from past time points

• [Chomicki 1995]:
– keep only answers to past-subformulae from the previous time point
– update those in each step
– does not work with future operators

φ = 2−Employee(x)

2−ψ ≡ ψ ∧•−2−ψ

bounded history encoding: required space independent of the length of the history

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 7

What about the future?

future operators do not add expressivity ...

[Gabbay 1989]:

• use separation theorem to eliminate future operators

• non-elementary blow-up

... but they allow for more concise queries

[Laroussinie, Markey, Schnoebelen 2002]:

• LTL with past operators is exponentially more succinct than without

our approach:

• adapt Chomicki’s algorithm for future operators

• keep the bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 8

What about the future?

future operators do not add expressivity ...

[Gabbay 1989]:

• use separation theorem to eliminate future operators

• non-elementary blow-up

... but they allow for more concise queries

[Laroussinie, Markey, Schnoebelen 2002]:

• LTL with past operators is exponentially more succinct than without

our approach:

• adapt Chomicki’s algorithm for future operators

• keep the bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 8

What about the future?

future operators do not add expressivity ...

[Gabbay 1989]:

• use separation theorem to eliminate future operators

• non-elementary blow-up

... but they allow for more concise queries

[Laroussinie, Markey, Schnoebelen 2002]:

• LTL with past operators is exponentially more succinct than without

our approach:

• adapt Chomicki’s algorithm for future operators

• keep the bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 8

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c}

{a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c}

{a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c}

{a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ xψ0)

. . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅)

{a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c}

{c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1)

. . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ xψ0) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .)

{a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ . . .) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .)

{a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ . . .) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Our approach
idea:

• use answer formulae instead of sets of answers

• variables as place-holders for future answers

φ = C(x)S (A(x)UB(x))︸ ︷︷ ︸
ψ

ψ ≡ B(x) ∨ (A(x) ∧#(A(x)UB(x))︸ ︷︷ ︸
xψ

)

i A(x) B(x) C(x) ψ φ answers

0 {a} {a, b} {a, c} {a, b} ∪ ({a} ∩ . . .) . . . ∪ ({a, c} ∩ ∅) {a, b}

1 {b} {c} {a, c} {c} ∪ ({b} ∩ xψ1) . . . ∪ ({a, c} ∩ . . .) {a, c}

→ bounded history encoding

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 9

Conclusions

Summary:

• temporal query language over CQs w.r.t. a DL-Lite TBox

• first-order rewritability follows from the atemporal case

• generalization of Chomicki’s idea (only relevant data is kept)

Future work:

• allow rigid names [FroCoS 2013]

• implement and compare

• more expressive DLs

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 10

Conclusions

Summary:

• temporal query language over CQs w.r.t. a DL-Lite TBox

• first-order rewritability follows from the atemporal case

• generalization of Chomicki’s idea (only relevant data is kept)

Future work:

• allow rigid names [FroCoS 2013]

• implement and compare

• more expressive DLs

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 10

Thank You

Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev.
Temporal description logic for ontology-based data access. In Proc. IJCAI’13. AAAI
Press, 2013. To appear.

Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporalizing ontology-based
data access. In Proc. CADE’13, volume 7898 of LNAI, pages 330–344. Springer, 2013.

Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering in
the description logic DL-Lite. In Proc. FroCoS’13, LNCS. Springer, 2013. To appear.

Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering
w.r.t. DL-Lite-ontologies. LTCS-Report 13-05, Chair of Automata Theory, TU Dresden,
2013. See http://lat.inf.tu-dresden.de/research/reports.html.

Jan Chomicki, David Toman, and Michael H. Böhlen. Querying ATSQL databases with
temporal logic. ACM T. Database Syst., 26(2):145–178, 2001.

Jan Chomicki. Efficient checking of temporal integrity constraints using bounded history
encoding. ACM T. Database Syst., 20(2):148–186, 1995.

Dov Gabbay. Declarative past and imperative future. In Proc. of the 1987 Coll. on
Temporal Logic in Specification, volume 398 of LNCS, pages 409–448. Springer, 1989.

Vı́ctor Gutiérrez-Basulto and Szymon Klarman. Towards a unifying approach to
representing and querying temporal data in description logics. In Proc. RR’12, volume
7497 of LNCS, pages 90–105. Springer, 2012.

François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal logic with
forgettable past. In Proc. LICS’02, pages 383–392. IEEE Press, 2002.

Ulm, July 24, 2013 Temporal Query Answering in DL-Lite 11

	Introduction
	Preliminaries
	Results
	Conclusions

