

Institute of Theoretical Computer Science Chair of Automata Theory

QUERY ANSWERING

Stefan Borgwardt Marcel Lippmann Veronika Thost

Ulm, July 24, 2013

Institute of Theoretical Computer Science Chair of Automata Theory

QUERY ANSWERING IN DL-LITE

Stefan Borgwardt Marcel Lippmann Veronika Thost

Ulm, July 24, 2013

Institute of Theoretical Computer Science Chair of Automata Theory

TEMPORAL QUERY ANSWERING IN DL-LITE

Stefan Borgwardt Marcel Lippmann Veronika Thost

Ulm, July 24, 2013

• incomplete knowledge

- incomplete knowledge
 OBDA
- background knowledge

- incomplete knowledge
 OBDA
- background knowledge
- rewrite ψ w.r.t. $\mathcal T$ (possibly exponential)
- $\operatorname{Cert}(\psi, \langle \mathcal{A}, \mathcal{T} \rangle) = \operatorname{Ans}(\psi^{\mathcal{T}}, \operatorname{DB}(\mathcal{A}))$

- concept names: Employee, Manager, Unemployed
- role names: manages

DL-Lite_{core}

- concept names: Employee, Manager, Unemployed
- role names: manages
- concept inclusions: ∃manages ⊑ Manager, ∃manages ⊑ Employee, Employee ⊑ ∃manages⁻, Employee ⊑ ¬Unemployed
- assertions: manages(franz, stefan)

DL-Lite_{core}

- concept names: Employee, Manager, Unemployed
- role names: manages
- concept inclusions: ∃manages ⊑ Manager, ∃manages ⊑ Employee, Employee ⊑ ∃manages⁻, Employee ⊑ ¬Unemployed
- assertions: manages(franz, stefan)

- concept names: Employee, Manager, Unemployed
- role names: manages
- concept inclusions: ∃manages Manager, ∃manages Employee, Employee ∃manages , Employee ¬Unemployed
- assertions: manages(franz, stefan)

- concept names: Employee, Manager, Unemployed
- role names: manages
- concept inclusions: ∃manages Manager, ∃manages Employee, Employee ∃manages , Employee ¬Unemployed
- assertions: manages(franz, stefan)

• conjunctive query: Manager(x)? $\sim \{[x \mapsto \text{franz}]\}$

- concept names: Employee, Manager, Unemployed
- role names: manages
- concept inclusions: ∃manages ⊑ Manager, ∃manages ⊑ Employee, Employee ⊑ ∃manages ¯, Employee ⊑ ¬Unemployed
- assertions: manages(franz, stefan)

- conjunctive query: Manager(x)? $\sim \{[x \mapsto \text{franz}]\}$
- first-order rewriting: $\psi = \text{Manager}(x)$ $\sim \psi^{\mathcal{T}} = \text{Manager}(x) \lor \exists y.\text{manages}(x, y)$

- concept names: Employee, Manager, Unemployed
- role names: manages
- concept inclusions: ∃manages ⊑ Manager, ∃manages ⊑ Employee, Employee ⊑ ∃manages ¯, Employee ⊑ ¬Unemployed
- assertions: manages(franz, stefan)

- conjunctive query: Manager(x)? $\sim \{[x \mapsto \text{franz}]\}$
- first-order rewriting:
 ψ = Manager(x)
 → ψ^T = Manager(x) ∨ ∃y.manages(x, y)
 → (SELECT * FROM Manager) UNION (SELECT first FROM manages)

• temporal knowledge base (TKB) $\mathcal{K} = \langle (\mathcal{A}_i)_{0 \leq i \leq n}, \mathcal{T} \rangle$

- temporal knowledge base (TKB) $\mathcal{K} = \langle (\mathcal{A}_i)_{0 \leq i \leq n}, \mathcal{T} \rangle$
- sequences of interpretations (*I_i*)_{0≤i≤n}
 - shared domain
 - rigid individuals

- temporal knowledge base (TKB) $\mathcal{K} = \langle (\mathcal{A}_i)_{0 \leq i \leq n}, \mathcal{T} \rangle$
- sequences of interpretations $(\mathcal{I}_i)_{0 \le i \le n}$
 - shared domain
 - rigid individuals

Temporal conjunctive queries (TCQs)

$$\phi := \psi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \bigcirc \phi \mid \bullet \phi \mid \phi_1 \lor \phi_2 \mid \square \phi \mid \diamond \phi \mid$$
$$\bigcirc^- \phi \mid \bullet^- \phi \mid \phi_1 \lor \phi_2 \mid \square^- \phi \mid \diamond^- \phi$$

- LTL-based syntax, as in [Gutiérrez-Basulto, Klarman 2012] and
 [Baader, Borgwardt, Lippmann 2013]
- past and future operators, no negation

Temporal conjunctive queries (TCQs)

$$\phi := \psi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \bigcirc \phi \mid \bullet \phi \mid \phi_1 \lor \phi_2 \mid \square \phi \mid \diamond \phi \mid$$
$$\bigcirc^- \phi \mid \bullet^- \phi \mid \phi_1 \lor \phi_2 \mid \square^- \phi \mid \diamond^- \phi$$

- LTL-based syntax, as in [Gutiérrez-Basulto, Klarman 2012] and [Baader, Borgwardt, Lippmann 2013]
- past and future operators, no negation

Unemployed(x) $\land \bigcirc$ - Employee(x)

 \Box ⁻Employee(x)

 $\bigcirc^{-10} \diamondsuit (\operatorname{Overheated}(x) \land \bigcirc \diamondsuit \operatorname{Overheated}(x))$

Temporal conjunctive queries (TCQs)

$$\phi := \psi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \bigcirc \phi \mid \bullet \phi \mid \phi_1 \lor \phi_2 \mid \square \phi \mid \diamond \phi \mid$$
$$\bigcirc^- \phi \mid \bullet^- \phi \mid \phi_1 \lor \phi_2 \mid \square^- \phi \mid \diamond^- \phi$$

- LTL-based syntax, as in [Gutiérrez-Basulto, Klarman 2012] and [Baader, Borgwardt, Lippmann 2013]
- past and future operators, no negation

Unemployed(x) $\land \bigcirc$ - Employee(x)

 \square -Employee(x)

 $\bigcirc^{-10} \diamondsuit (\operatorname{Overheated}(x) \land \bigcirc \diamondsuit \operatorname{Overheated}(x))$

 $\operatorname{Cert}(\phi, \mathcal{K}, n) = \operatorname{Ans}(\phi^{\mathcal{T}}, \operatorname{DB}(\mathcal{K}), n)$

Ulm, July 24, 2013

Temporal Query Answering in *DL-Lite*

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

i	\mathcal{A}_i	$\operatorname{Started}(x)$	$\operatorname{Running}(x)$	$ \bullet \text{Running}(x) $	$\bullet \bullet \operatorname{Running}(x)$	ϕ
0	$\{\text{Started}(a)\}$					
1	$\{ \text{Started}(b), \\ \text{Running}(a) \}$					
2	$\{\operatorname{Running}(b)\}$					
3	Ø					
4	Ø					

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

i	\mathcal{A}_i	$\operatorname{Started}(x)$	$\operatorname{Running}(x)$	$ \bullet \operatorname{Running}(x) $	$\bullet \bullet \text{Running}(x)$	ϕ
0	$\{\text{Started}(a)\}$	{ <i>a</i> }	Ø			
1	{Started(b), Running(a)}	{ <i>b</i> }	{ <i>a</i> }			
2	$\{\operatorname{Running}(b)\}$	Ø	{ <i>b</i> }			
3	Ø	Ø	Ø			
4	Ø	Ø	Ø			

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

i	\mathcal{A}_i	$\operatorname{Started}(x)$	$\operatorname{Running}(x)$	$ \bullet \operatorname{Running}(x) $	$\bullet \bullet \text{Running}(x)$	ϕ
0	$\{\text{Started}(a)\}$	{ <i>a</i> }	Ø	{ <i>a</i> }		
1	{Started(b), Running(a)}	{ <i>b</i> }	{ <i>a</i> }	{ <i>b</i> }		
2	$\{\operatorname{Running}(b)\}$	Ø	{ <i>b</i> }	Ø		
3	Ø	Ø	Ø	► Ø		
4	Ø	Ø	Ø	{ <i>a</i> , <i>b</i> }		

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

i	\mathcal{A}_i	$\operatorname{Started}(x)$	$\operatorname{Running}(x)$	$\bullet \operatorname{Running}(x)$	$\bullet \bullet \operatorname{Running}(x)$	ϕ
0	$\{\text{Started}(a)\}$	{ <i>a</i> }	Ø	{ <i>a</i> }	{ <i>b</i> }	
1	{Started(b), Running(a)}	{ <i>b</i> }	{ <i>a</i> }	{ <i>b</i> }	Ø	
2	$\{\operatorname{Running}(b)\}$	Ø	{ <i>b</i> }	Ø	Ø	
3	Ø	Ø	Ø	→ Ø	→ {a, b}	
4	Ø	Ø	Ø	{a, b}	{ <i>a</i> , <i>b</i> }	

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

i	\mathcal{A}_i	$\operatorname{Started}(x)$	$\operatorname{Running}(x)$	$ \bullet \operatorname{Running}(x) $	• • Running(x)	ϕ
0	$\{\text{Started}(a)\}$	{ <i>a</i> }	Ø	{ <i>a</i> }	{ <i>b</i> }	{ <i>a</i> }
1	{Started(b), Running(a)}	{ <i>b</i> }	{ <i>a</i> }	{ <i>b</i> }	Ø	{ <i>a, b</i> }
2	$\{\operatorname{Running}(b)\}$	Ø	{ <i>b</i> }	Ø	Ø	{ <i>b</i> }
3	Ø	Ø	Ø	► Ø	→ {a, b}	{ <i>b</i> }
4	Ø	Ø	Ø	{a, b}	{ <i>a</i> , <i>b</i> }	{ <i>b</i> }

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

i	\mathcal{A}_i	$\operatorname{Started}(x)$	$\operatorname{Running}(x)$	• Running(x)	$\bullet \bullet \operatorname{Running}(x)$	ϕ
0	$\{\text{Started}(a)\}$	{ <i>a</i> }	Ø	{ <i>a</i> }	{ <i>b</i> }	{ <i>a</i> }
1	$\{ \text{Started}(b), \\ \text{Running}(a) \}$	{ <i>b</i> }	{ <i>a</i> }	{ <i>b</i> }	Ø	{ <i>a, b</i> }
2	$\{\operatorname{Running}(b)\}$	Ø	{ <i>b</i> }	Ø	Ø	{ <i>b</i> }
3	Ø	Ø	Ø	Ø	> 0	Ø
4	Ø	Ø	Ø	> Ø	{ <i>a</i> , <i>b</i> }	Ø
5	Ø	Ø	Ø	{ <i>a, b</i> }	{ <i>a</i> , <i>b</i> }	Ø

 $\phi = (\operatorname{Running}(x) \lor \bullet \operatorname{Running}(x) \lor \bullet \bullet \operatorname{Running}(x)) \operatorname{S} \operatorname{Started}(x)$

"all processes that have never been inactive for three consecutive time points since they were started"

 $\psi_1\,\mathsf{S}\,\psi_2\equiv\psi_2\vee(\psi_1\wedge\bigcirc^-(\psi_1\,\mathsf{S}\,\psi_2))$

i	\mathcal{A}_i	$\operatorname{Started}(x)$	$\operatorname{Running}(x)$	$\bullet \operatorname{Running}(x)$	••Running(x)	ϕ
0	$\{\text{Started}(a)\}$	{ <i>a</i> }	Ø	{ <i>a</i> }	{ <i>b</i> }	{ <i>a</i> }
1	{Started(b), Running(a)}	{ <i>b</i> }	{ <i>a</i> }	{ <i>b</i> }	Ø	{ <i>a, b</i> }
2	$\{\operatorname{Running}(b)\}$	Ø	{ <i>b</i> }	Ø	Ø	{ <i>b</i> }
3	Ø	Ø	Ø	Ø	> 0	Ø
4	Ø	Ø	Ø	> 0	{ <i>a</i> , <i>b</i> }	Ø
5	Ø	Ø	Ø	{ <i>a</i> , <i>b</i> }	{ <i>a</i> , <i>b</i> }	Ø

→ store all past data in a temporal database and use a temporal query language, e.g. ATSOL [Chomicki, Toman, Böhlen 2001]

- query is fixed and always evaluated at the last time point
- idea: discard irrelevant data from past time points

- query is fixed and always evaluated at the last time point
- idea: discard irrelevant data from past time points
- [Chomicki 1995]:
 - keep only answers to past-subformulae from the previous time point
 - update those in each step
 - does not work with future operators

- query is fixed and always evaluated at the last time point
- idea: discard irrelevant data from past time points
- [Chomicki 1995]:
 - keep only answers to past-subformulae from the previous time point
 - update those in each step
 - does not work with future operators

 $\phi = \Box^- \operatorname{Employee}(x)$

 $\Box^-\psi\equiv\psi\wedge\bullet^-\Box^-\psi$

- query is fixed and always evaluated at the last time point
- idea: discard irrelevant data from past time points
- [Chomicki 1995]:
 - keep only answers to past-subformulae from the previous time point
 - update those in each step
 - does not work with future operators

- query is fixed and always evaluated at the last time point
- idea: discard irrelevant data from past time points
- [Chomicki 1995]:
 - keep only answers to past-subformulae from the previous time point
 - update those in each step
 - does not work with future operators

 $\phi = \Box^- \operatorname{Employee}(x)$

bounded history encoding: required space independent of the length of the history

What about the future?

future operators do not add expressivity ...

[Gabbay 1989]:

- use separation theorem to eliminate future operators
- non-elementary blow-up

What about the future?

future operators do not add expressivity ...

[Gabbay 1989]:

- use separation theorem to eliminate future operators
- non-elementary blow-up

... but they allow for more concise queries

[Laroussinie, Markey, Schnoebelen 2002]:

• LTL with past operators is exponentially more succinct than without

What about the future?

future operators do not add expressivity ...

[Gabbay 1989]:

- use separation theorem to eliminate future operators
- non-elementary blow-up

... but they allow for more concise queries

[Laroussinie, Markey, Schnoebelen 2002]:

• LTL with past operators is exponentially more succinct than without

our approach:

- adapt Chomicki's algorithm for future operators
- keep the bounded history encoding

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) S(\underline{A(x) \cup B(x)})$$
$$\psi \equiv B(x) \lor (A(x) \land \underbrace{\bigcirc (A(x) \cup B(x))}_{x\psi})$$

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) \underbrace{S(\underline{A(x) \cup B(x)})}_{\psi}$$
$$\psi \equiv B(x) \lor (\underline{A(x) \land \bigcirc(\underline{A(x) \cup B(x)})}_{x\psi}$$
$$\underbrace{i \quad A(x) \quad B(x) \quad C(x) \quad \psi \qquad \phi \qquad \text{answers}}_{0 \quad \{a\} \quad \{a, b\} \quad \{a, c\}}$$

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) S \underbrace{(A(x) \cup B(x))}_{\psi}$$
$$\psi \equiv B(x) \lor (A(x) \land \underbrace{\bigcirc (A(x) \cup B(x)))}_{x^{\psi}}$$
$$\underbrace{i \quad A(x) \quad B(x) \quad C(x) \quad \psi \qquad \phi \qquad \text{answers}}_{0 \quad \{a, b\} \quad \{a, c\} \quad \{a, b\} \cup (\{a\} \cap x_{0}^{\psi})}$$

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) S \underbrace{(A(x) \cup B(x))}_{\psi}$$
$$\psi \equiv B(x) \lor (A(x) \land \underbrace{\bigcirc (A(x) \cup B(x)))}_{x^{\psi}}$$
$$\underbrace{i \quad A(x) \quad B(x) \quad C(x) \quad \psi \qquad \phi \qquad \text{answers}}_{0 \quad \{a, b\} \quad \{a, c\} \quad \{a, b\} \cup (\{a\} \cap x_{0}^{\psi}) \frown \ldots \cup (\{a, c\} \cap \emptyset)}$$

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) S \underbrace{(A(x) \cup B(x))}_{\psi}$$

$$\psi \equiv B(x) \lor (A(x) \land \underbrace{\bigcirc (A(x) \cup B(x)))}_{x^{\psi}}$$

$$\underbrace{i \quad A(x) \quad B(x) \quad C(x) \quad \psi \quad \phi \quad \text{answers}}_{0 \quad \{a, b\} \quad \{a, c\} \quad \{a, b\} \cup (\{a\} \cap x_{0}^{\psi}) \stackrel{\frown}{\longrightarrow} \dots \cup (\{a, c\} \cap \emptyset) \quad \{a, b\}$$

idea:

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

 $\phi = \mathcal{C}(x) \, \mathsf{S}\underbrace{(\mathcal{A}(x) \cup \mathcal{B}(x))}_{qh}$ $\psi \equiv \mathbf{B}(x) \lor (\mathbf{A}(x) \land \bigcirc (\mathbf{A}(x) \cup \mathbf{B}(x)))$ χψ A(x)B(x)C(x) ψ i φ answers $\{a, b\} \ \{a, c\} \ \{a, b\} \cup (\{a\} \cap X_0^{\psi}) \frown (\{a, c\} \cap \emptyset) \ \{a, b\}$ 0 *{a}* 1 {*b*} {*c*} {*a*, *c*}

idea:

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

 $\phi = C(x) \underbrace{S}(\underbrace{A(x) \cup B(x)})_{\psi}$ $\psi \equiv B(x) \lor (A(x) \land \underbrace{\bigcirc(A(x) \cup B(x))}_{x\psi})$ $i \quad A(x) \quad B(x) \quad C(x) \quad \psi \quad \phi \quad \text{answers}$ $0 \quad \{a\} \quad \{a, b\} \quad \{a, c\} \quad \{a, b\} \cup (\{a\} \cap x_0^{\psi}) \frown \ldots \cup (\{a, c\} \cap \emptyset) \quad \{a, b\}$ $1 \quad \{b\} \quad \{c\} \quad \{a, c\} \quad \{c\} \cup (\{b\} \cap x_1^{\psi})$

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) S \underbrace{(A(x) \cup B(x))}_{\psi}$$

$$\psi \equiv B(x) \lor (A(x) \land \bigcirc (A(x) \cup B(x)))$$

$$i \quad A(x) \quad B(x) \quad C(x) \quad \psi \quad \phi \quad \text{answers}$$

$$0 \quad \{a\} \quad \{a, b\} \quad \{a, c\} \quad \{a, b\} \cup (\{a\} \cap x_0^{\psi}) \quad \dots \cup (\{a, c\} \cap \emptyset) \quad \{a, b\}$$

$$1 \quad \{b\} \quad \{c\} \quad \{a, c\} \quad \{c\} \cup (\{b\} \cap x_1^{\psi}) \quad \dots \cup (\{a, c\} \cap \dots)$$

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) \underbrace{S(A(x) \cup B(x))}_{\psi}$$

$$\psi \equiv B(x) \lor (A(x) \land \bigcirc (A(x) \cup B(x)))$$

$$i \quad A(x) \quad B(x) \quad C(x) \quad \psi \quad \phi \quad \text{answers}$$

$$0 \quad \{a\} \quad \{a, b\} \quad \{a, c\} \quad \{a, b\} \cup (\{a\} \cap \ldots) \quad \ldots \cup (\{a, c\} \cap \emptyset) \quad \{a, b\}$$

$$1 \quad \{b\} \quad \{c\} \quad \{a, c\} \quad \{c\} \cup (\{b\} \cap x_1^{\psi}) \quad \ldots \cup (\{a, c\} \cap \ldots)$$

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

$$\phi = C(x) \underbrace{S(A(x) \cup B(x))}_{\psi}$$

$$\psi \equiv B(x) \lor (A(x) \land \bigcirc (A(x) \cup B(x)))$$

$$i \quad A(x) \quad B(x) \quad C(x) \quad \psi \quad \phi \quad \text{answers}$$

$$0 \quad \{a\} \quad \{a, b\} \quad \{a, c\} \quad \{a, b\} \cup (\{a\} \cap \ldots) \quad \cdots \cup (\{a, c\} \cap \emptyset) \quad \{a, b\}$$

$$1 \quad \{b\} \quad \{c\} \quad \{a, c\} \quad \{c\} \cup (\{b\} \cap x_1^{\psi}) \quad \cdots \cup (\{a, c\} \cap \ldots) \quad \{a, c\}$$

idea:

- use answer formulae instead of sets of answers
- variables as place-holders for future answers

 \rightarrow bounded history encoding

Temporal Query Answering in DL-Lite

Conclusions

Summary:

- temporal query language over CQs w.r.t. a *DL-Lite* TBox
- first-order rewritability follows from the atemporal case
- generalization of Chomicki's idea (only relevant data is kept)

Conclusions

Summary:

- temporal query language over CQs w.r.t. a *DL-Lite* TBox
- first-order rewritability follows from the atemporal case
- generalization of Chomicki's idea (only relevant data is kept)

Future work:

- allow rigid names [FroCoS 2013]
- implement and compare
- more expressive DLs

Thank You

- Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Temporal description logic for ontology-based data access. In *Proc. IJCAI'13*. AAAI Press, 2013. To appear.
- Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporalizing ontology-based data access. In Proc. CADE'13, volume 7898 of LNAI, pages 330–344. Springer, 2013.
- Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering in the description logic *DL-Lite*. In *Proc. FroCoS'13*, LNCS. Springer, 2013. To appear.
- Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering w.r.t. *DL-Lite*-ontologies. LTCS-Report 13-05, Chair of Automata Theory, TU Dresden, 2013. See http://lat.inf.tu-dresden.de/research/reports.html.
- Jan Chomicki, David Toman, and Michael H. Böhlen. Querying ATSQL databases with temporal logic. *ACM T. Database Syst.*, 26(2):145–178, 2001.
- Jan Chomicki. Efficient checking of temporal integrity constraints using bounded history encoding. *ACM T. Database Syst.*, 20(2):148–186, 1995.
- Dov Gabbay. Declarative past and imperative future. In *Proc. of the 1987 Coll. on Temporal Logic in Specification*, volume 398 of *LNCS*, pages 409–448. Springer, 1989. Víctor Gutiérrez-Basulto and Szymon Klarman. Towards a unifying approach to
 - representing and querying temporal data in description logics. In *Proc. RR'12*, volume 7497 of *LNCS*, pages 90–105. Springer, 2012.
- François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal logic with forgettable past. In *Proc. LICS'02*, pages 383–392. IEEE Press, 2002.