



Institute of Theoretical Computer Science Chair of Automata Theory

# POSITIVE SUBSUMPTION IN FUZZY $\mathcal{EL}$ WITH GENERAL T-NORMS

Stefan Borgwardt Rafael Peñaloza

北京, August 7, 2013

• EL is used in SNOMED CT

• *EL* is used in **SNOMED** CT

- compute all inferences in polynomial time
- highly optimized reasoners

• EL is used in SNOMED CT

PerinatalCyanoticAttack ⊑ CardiovascularDisorder ⊓ ∃occurrence.PerinatalPeriod ⊓ ∃manifestation.Cyanosis

- compute all inferences in polynomial time
- highly optimized reasoners

#### vague concepts:

- "perinatal period = period of time around birth"
- "cyanosis = bluish discoloration of the skin"

• EL is used in SNOMED CT

- compute all inferences in polynomial time
- highly optimized reasoners
- vague concepts:
  - "perinatal period = period of time around birth"
  - "cyanosis = bluish discoloration of the skin"



• EL is used in SNOMED CT

- compute all inferences in polynomial time
- highly optimized reasoners
- vague concepts:
  - "perinatal period = period of time around birth"
  - "cyanosis = bluish discoloration of the skin"
- model this using values from [0, 1]



• EL is used in SNOMED CT

- compute all inferences in polynomial time
- highly optimized reasoners
- vague concepts:
  - "perinatal period = period of time around birth"
  - "cyanosis = bluish discoloration of the skin"
- model this using values from [0, 1]
- does reasoning stay tractable?



Mathematical fuzzy logic

all statements hold to a degree from [0, 1]

```
\textbf{t-norm} \otimes : [0,1] \times [0,1] \rightarrow [0,1] \text{ generalizes } \land : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}:
```

- associative
- commutative
- monotone
- unit 1
- (continuous)

Mathematical fuzzy logic

all statements hold to a degree from [0, 1]

```
t-norm \otimes: [0, 1] \times [0, 1] \rightarrow [0, 1] generalizes \land: \{0, 1\} \times \{0, 1\} \rightarrow \{0, 1\}:
```

- associative
- commutative
- monotone
- unit 1
- (continuous)

residuum  $\Rightarrow$  generalizes implication:

- $(x \otimes y) \leq z \text{ iff } y \leq (x \Rightarrow z)$
- unique if  $\otimes$  is continuous
- propositional:  $(x \land y) \rightarrow z$  iff  $y \rightarrow (x \rightarrow z)$

Mathematical fuzzy logic

all statements hold to a degree from [0, 1]

```
\textbf{t-norm} \otimes : [0,1] \times [0,1] \rightarrow [0,1] \text{ generalizes } \land : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}:
```

- associative
- commutative
- monotone
- unit 1
- (continuous)

residuum  $\Rightarrow$  generalizes implication:

- $(x \otimes y) \leq z \text{ iff } y \leq (x \Rightarrow z)$
- unique if  $\otimes$  is continuous
- propositional:  $(x \land y) \rightarrow z$  iff  $y \rightarrow (x \rightarrow z)$

#### [Hájek 2001, 2005]

北京, August 7, 2013

Gödel (G):  $x \otimes y = \min(x, y)$ 

Gödel (G):  $x \otimes y = \min(x, y)$ Product (II):  $x \otimes y = x \cdot y$ 

Gödel (G):  $x \otimes y = \min(x, y)$ Product (II):  $x \otimes y = x \cdot y$ Łukasiewicz (Ł):  $x \otimes y = \max(0, x + y - 1)$ 

Gödel (G):  $x \otimes y = \min(x, y)$ Product (II):  $x \otimes y = x \cdot y$ Łukasiewicz (Ł):  $x \otimes y = \max(0, x + y - 1)$ 

perinatal cyanotic attack: A cardiovascular disease in the perinatal period causing cyanosis.

Gödel (G):  $x \otimes y = \min(x, y)$ Product (II):  $x \otimes y = x \cdot y$ Łukasiewicz (Ł):  $x \otimes y = \max(0, x + y - 1)$ 

perinatal cyanotic attack: A cardiovascular disease in the perinatal period causing cyanosis.



Gödel (G):  $x \otimes y = \min(x, y)$ Product (II):  $x \otimes y = x \cdot y$ Łukasiewicz (Ł):  $x \otimes y = \max(0, x + y - 1)$ 

perinatal cyanotic attack: A cardiovascular disease in the perinatal period causing cyanosis.







All continuous t-norms are (isomorphic to) ordinal sums of the product and  $\ensuremath{\mathtt{Lukasiewicz}}\xspace$  t-norms.



Positive Subsumption in Fuzzy EL









All continuous t-norms are (isomorphic to) ordinal sums of the product and Łukasiewicz t-norms.



All continuous t-norms are (isomorphic to) ordinal sums of the product and Łukasiewicz t-norms











- role names: hasSeverity, hasSymptom
- top: ⊤







 existential restriction: ∃hasSymptom.Cough sup hasSymptom(x, y) ⊗ Cough(y) y∈∆

#### $\otimes$ - $\mathcal{EL}$ (2)

• existential restriction:  $\exists hasSymptom.Cough$   $\sup_{y \in \Delta} hasSymptom(x, y) \otimes Cough(y)$  $\exists y \in \Delta : hasSymptom(x, y) \land Cough(y)$ 

#### $\otimes$ - $\mathcal{EL}$ (2)

- existential restriction:  $\exists hasSymptom.Cough$   $\sup_{y \in \Delta} hasSymptom(x, y) \otimes Cough(y)$  $\exists y \in \Delta : hasSymptom(x, y) \land Cough(y)$
- TBox  $\mathcal{T}$ : set of general concept inclusions (GCIs):
  - $\langle \text{PerinatalCyanoticAttack} \sqsubseteq \exists \text{hasManifestation.Cyanosis} \ge q \rangle$ "PerinatalCyanoticAttack(x)  $\Rightarrow (\exists \text{hasManifestation.Cyanosis})(x) \ge q$ "

#### $\otimes$ - $\mathcal{EL}$ (2)

 existential restriction: ∃hasSymptom.Cough sup hasSymptom(x, y) ⊗ Cough(y) y∈∆ ∃y ∈ ∆ : hasSymptom(x, y) ∧ Cough(y)

• TBox  $\mathcal{T}$ : set of general concept inclusions (GCIs):

 $\langle \text{PerinatalCyanoticAttack} \sqsubseteq \exists \text{hasManifestation.Cyanosis} \ge q \rangle$ "PerinatalCyanoticAttack $(x) \Rightarrow (\exists \text{hasManifestation.Cyanosis})(x) \ge q$ "

reasoning tasks:

- *p*-subsumption: does  $\langle C \sqsubseteq D \ge p \rangle$  follow from  $\mathcal{T}$ ?
- compute the best subsumption degree (bsd) of C and D!
- classification: compute all bsds between concept names!
- positive subsumption: does " $C(x) \Rightarrow D(x) > 0$ " follow from  $\mathcal{T}$ ?

related work:

 $\bullet \,$  classification in classical  $\mathcal{E\!L}$  can be done in polynomial time

[Baader, Brandt, Lutz 2005]

- several highly optimized reasoners (CEL, jcel, ELK)
- classification in G-EL can be done in polynomial time

[Mailis, Stoilos, Simou, Stamou, Kollias 2012]

related work:

 $\bullet \,$  classification in classical  $\mathcal{E\!L}$  can be done in polynomial time

[Baader, Brandt, Lutz 2005]

- several highly optimized reasoners (CEL, jcel, ELK)
- classification in G-*EL* can be done in polynomial time [Mailis, Stoilos, Simou, Stamou, Kollias 2012]

positive subsumption in  $\otimes$ - $\mathcal{EL}$ :

- CO-NP-hard if  $\otimes$  starts with Łukasiewicz
- in P if  $\otimes$  does not start with Łukasiewicz

related work:

 $\bullet \,$  classification in classical  $\mathcal{E\!L}$  can be done in polynomial time

[Baader, Brandt, Lutz 2005]

- several highly optimized reasoners (CEL, jcel, ELK)
- classification in G-*EL* can be done in polynomial time [Mailis, Stoilos, Simou, Stamou, Kollias 2012]

positive subsumption in  $\otimes$ - $\mathcal{EL}$ :

- CO-NP-hard if  $\otimes$  starts with Łukasiewicz
- in P if  $\otimes$  does not start with Łukasiewicz

*p*-subsumption:

● CO-NP-hard if ⊗ contains Łukasiewicz

related work:

 $\bullet \,$  classification in classical  $\mathcal{E\!L}$  can be done in polynomial time

[Baader, Brandt, Lutz 2005]

- several highly optimized reasoners (CEL, jcel, ELK)
- classification in G-*EL* can be done in polynomial time

[Mailis, Stoilos, Simou, Stamou, Kollias 2012]

#### positive subsumption in $\otimes$ - $\mathcal{EL}$ :

- CO-NP-hard if  $\otimes$  starts with Łukasiewicz
- in P if  $\otimes$  does not start with Łukasiewicz

#### *p*-subsumption:

- CO-NP-hard if ⊗ contains Łukasiewicz
- 1-subsumption is in P if ⊗ does not start with Łukasiewicz, all roles are crisp, and all GCIs are in normal form [DL 2013]

vertex cover problem  $\mathcal{V} = (V, \mathcal{E}, k)$ :

•  $V = \{v_1, \ldots, v_m\}$ 





vertex cover problem  $\mathcal{V} = (V, \mathcal{E}, k)$ :

•  $V = \{v_1, ..., v_m\}$ 

• 
$$\mathcal{E} \subseteq V \times V$$

vertex cover problem  $\mathcal{V} = (V, \mathcal{E}, k)$ :

- $V = \{v_1, \ldots, v_m\}$
- $\mathcal{E} \subseteq V \times V$
- vertex cover of size  $\leq k$ ?



vertex cover problem  $\mathcal{V} = (V, \mathcal{E}, k)$ :

- $V = \{v_1, \ldots, v_m\}$
- $\mathcal{E} \subseteq V \times V$
- vertex cover of size  $\leq k$ ?



$$\mathcal{T}_{\mathcal{V}} := \{ \langle V_i^{m-k} \sqsubseteq V_i^{m-k+1} \ge 1 \rangle, \ \langle \top \sqsubseteq V_i \ge \frac{m-k-1}{m-k} \rangle \mid 1 \le i \le m \} \cup$$

vertex cover problem  $\mathcal{V} = (V, \mathcal{E}, k)$ :

- $V = \{v_1, \ldots, v_m\}$
- $\mathcal{E} \subseteq V \times V$
- vertex cover of size  $\leq k$ ?



$$\begin{split} \mathcal{T}_{\mathcal{V}} &:= \{ \langle V_i^{m-k} \sqsubseteq V_i^{m-k+1} \ge 1 \rangle, \ \langle \top \sqsubseteq V_i \ge \frac{m-k-1}{m-k} \rangle \mid 1 \le i \le m \} \cup \\ \{ \langle \top \sqsubseteq V_{j_1} \sqcap V_{j_2} \ge \frac{m-k-1}{m-k} \rangle \mid \{ v_{j_1}, v_{j_2} \} \in \mathcal{E} \} \end{split}$$

vertex cover problem  $\mathcal{V} = (V, \mathcal{E}, k)$ : •  $V = \{v_1, \dots, v_m\}$ 

- $\mathcal{E} \subseteq V \times V$
- vertex cover of size  $\leq k$ ?



$$\begin{aligned} \mathcal{T}_{\mathcal{V}} &:= \{ \langle V_i^{m-k} \sqsubseteq V_i^{m-k+1} \ge 1 \rangle, \ \langle \top \sqsubseteq V_i \ge \frac{m-k-1}{m-k} \rangle \mid 1 \le i \le m \} \cup \\ \{ \langle \top \sqsubseteq V_{j_1} \sqcap V_{j_2} \ge \frac{m-k-1}{m-k} \rangle \mid \{ v_{j_1}, v_{j_2} \} \in \mathcal{E} \} \end{aligned}$$

There is no vertex cover of  $(V, \mathcal{E})$  of size  $\leq k$  iff " $(V_1 \sqcap \ldots \sqcap V_m)(x) > 0$ " (w.r.t.  $\mathcal{T}_{\mathcal{V}}$ ).

# Positive subsumption in $\Pi\mathchar`-\ensuremath{\mathcal{EL}}$ is in P

idea:

- transform TBox into classical TBox encoding all positive subsumptions
- reason over crisp interpretations

# Positive subsumption in $\Pi\mathchar`-\ensuremath{\mathcal{EL}}$ is in P

idea:

- transform TBox into classical TBox encoding all positive subsumptions
- reason over crisp interpretations

$$\mathcal{T}^{>0} := \{ C \sqsubseteq D \mid \langle C \sqsubseteq D \ge q \rangle \in \mathcal{T}, q > 0 \}$$

# Positive subsumption in $\Pi\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathchar`-\mathc$

idea:

- transform TBox into classical TBox encoding all positive subsumptions
- reason over crisp interpretations

$$\mathcal{T}^{>0} := \{ C \sqsubseteq D \mid \langle C \sqsubseteq D \ge q \rangle \in \mathcal{T}, q > 0 \}$$

does not work for the Lukasiewicz t-norm:

$$\langle A \sqsubseteq B \ge 0.4 \rangle, \ \langle B \sqsubseteq C \ge 0.4 \rangle$$

# Positive subsumption in $\Pi\mathcal{-}\mathcal{E\!L}$ is in P

idea:

- transform TBox into classical TBox encoding all positive subsumptions
- reason over crisp interpretations

$$\mathcal{T}^{>0} := \{ C \sqsubseteq D \mid \langle C \sqsubseteq D \ge q \rangle \in \mathcal{T}, q > 0 \}$$

does not work for the Lukasiewicz t-norm:

$$\langle A \sqsubseteq B \ge 0.4 \rangle, \ \langle B \sqsubseteq C \ge 0.4 \rangle$$

 $\rightsquigarrow$  " $A(x) \Rightarrow C(x) \ge 0.4 \otimes 0.4 = 0$ ", but not necessarily > 0

idea:

 $\bullet~$  generalize the completion algorithm for classical  $\mathcal{E\!L}$ 

 $A \sqsubseteq \exists r.B, \ B \sqsubseteq C \ \rightsquigarrow \ A \sqsubseteq \exists r.C$ 

idea:

 $\bullet~$  generalize the completion algorithm for classical  $\mathcal{E\!L}$ 

 $A \sqsubseteq \exists r.B, \ B \sqsubseteq C \ \rightsquigarrow \ A \sqsubseteq \exists r.C$ 

• keep track of degrees

 $\langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle B \sqsubseteq C \ge p \rangle \ \rightsquigarrow \ \langle A \sqsubseteq \exists r.C \ge p \otimes q \rangle$ 

idea:

 $\bullet~$  generalize the completion algorithm for classical  $\mathcal{E\!L}$ 

 $A \sqsubseteq \exists r.B, \ B \sqsubseteq C \ \rightsquigarrow \ A \sqsubseteq \exists r.C$ 

• keep track of degrees

 $\langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle B \sqsubseteq C \ge p \rangle \ \rightsquigarrow \ \langle A \sqsubseteq \exists r.C \ge p \otimes q \rangle$ 

• restricted to GCIs in normal form:

 $\langle A \sqcap B \sqsubseteq C \ge q \rangle, \ \langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle \exists r.A \sqsubseteq B \ge q \rangle$ 

idea:

 $\bullet~$  generalize the completion algorithm for classical  $\mathcal{E\!L}$ 

 $A \sqsubseteq \exists r.B, B \sqsubseteq C \rightsquigarrow A \sqsubseteq \exists r.C$ 

• keep track of degrees

 $\langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle B \sqsubseteq C \ge p \rangle \ \rightsquigarrow \ \langle A \sqsubseteq \exists r.C \ge p \otimes q \rangle$ 

• restricted to GCIs in normal form:

 $\langle A \sqcap B \sqsubseteq C \ge q \rangle, \ \langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle \exists r.A \sqsubseteq B \ge q \rangle$ 

problem:

 $\langle A \sqsubseteq B \ge q \rangle, \ \langle A \sqsubseteq C \ge p \rangle, \ \langle B \sqcap C \sqsubseteq D \ge o \rangle$ 

• classical  $\mathcal{EL}$  and G- $\mathcal{EL} \rightsquigarrow \langle A \sqsubseteq D \ge o \otimes p \otimes q \rangle$ 

idea:

 $\bullet~$  generalize the completion algorithm for classical  $\mathcal{E\!L}$ 

 $A \sqsubseteq \exists r.B, B \sqsubseteq C \rightsquigarrow A \sqsubseteq \exists r.C$ 

• keep track of degrees

 $\langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle B \sqsubseteq C \ge p \rangle \ \rightsquigarrow \ \langle A \sqsubseteq \exists r.C \ge p \otimes q \rangle$ 

• restricted to GCIs in normal form:

 $\langle A \sqcap B \sqsubseteq C \ge q \rangle, \ \langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle \exists r.A \sqsubseteq B \ge q \rangle$ 

problem:

$$\langle A \sqsubseteq B \ge q \rangle, \ \langle A \sqsubseteq C \ge p \rangle, \ \langle B \sqcap C \sqsubseteq D \ge o \rangle$$

- classical  $\mathcal{EL}$  and G- $\mathcal{EL} \rightsquigarrow \langle A \sqsubseteq D \ge o \otimes p \otimes q \rangle$
- $\Pi$ - $\mathcal{EL}$  and  $\pounds$ - $\mathcal{EL} \rightsquigarrow \langle A \sqcap A \sqsubseteq D \ge o \otimes p \otimes q \rangle$
- need to distinguish  $A, A \sqcap A, A^3, \ldots$

idea:

• generalize the completion algorithm for classical *EL* 

 $A \sqsubseteq \exists r.B, B \sqsubseteq C \rightsquigarrow A \sqsubseteq \exists r.C$ 

• keep track of degrees

 $\langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle B \sqsubseteq C \ge p \rangle \ \rightsquigarrow \ \langle A \sqsubseteq \exists r.C \ge p \otimes q \rangle$ 

• restricted to GCIs in normal form:

 $\langle A \sqcap B \sqsubseteq C \ge q \rangle, \ \langle A \sqsubseteq \exists r.B \ge q \rangle, \ \langle \exists r.A \sqsubseteq B \ge q \rangle$ 

problem:

$$\langle A \sqsubseteq B \ge q \rangle, \ \langle A \sqsubseteq C \ge p \rangle, \ \langle B \sqcap C \sqsubseteq D \ge o \rangle$$

- classical  $\mathcal{EL}$  and G- $\mathcal{EL} \rightsquigarrow \langle A \sqsubseteq D \ge o \otimes p \otimes q \rangle$
- $\Pi$ - $\mathcal{EL}$  and  $\pounds$ - $\mathcal{EL} \rightsquigarrow \langle A \sqcap A \sqsubseteq D \ge o \otimes p \otimes q \rangle$
- need to distinguish  $A, A \sqcap A, A^3, \ldots$

polynomial algorithm for 1-subsumption with only crisp roles

Positive Subsumption in Fuzzy EL

# Conclusions

#### Summary:

- fuzzy variants of the light-weight DL  $\mathcal{E\!L}$
- positive subsumption either CO-NP-hard or in P
- *p*-subsumption often CO-NP-hard

# Conclusions

#### Summary:

- fuzzy variants of the light-weight DL  $\mathcal{E\!L}$
- positive subsumption either CO-NP-hard or in P
- *p*-subsumption often CO-NP-hard

#### Future work:

- completion algorithm for *p*-subsumption
- upper bounds for CO-NP-hard cases

- Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the *EL* envelope. In *Proc. IJCAI'05*, pages 364–369, 2005.
- Stefan Borgwardt and Rafael Peñaloza. About subsumption in fuzzy *EL*. In Thomas Eiter, Birte Glimm, Yevgeny Kazakov, and Markus Krötzsch, editors, *Proc. DL'13*, volume 1014 of *CEUR-WS*, 2013. Poster paper.
- Petr Hájek. Metamathematics of Fuzzy Logic (Trends in Logic). Springer, 2001.
- Petr Hájek. Making fuzzy description logic more general. *Fuzzy Set. Syst.*, 154(1):1–15, 2005.
- Theofilos Mailis, Giorgos Stoilos, Nikolaos Simou, Giorgos B. Stamou, and Stefanos Kollias. Tractable reasoning with vague knowledge using fuzzy *EL*<sup>++</sup>. *J. Intell. Inf. Syst.*, 39(2):399–440, 2012.