DECIDABLE GÖDEL DESCRIPTION LOGICS
WITHOUT THE FINITELY-VALUED MODEL PROPERTY

Stefan Borgwardt Felix Distel Rafael Peñaloza

Wien, July 23rd, 2014
Motivation

- vagueness often modeled ad-hoc, e.g. \existsseverity.High in SNOMED CT
Motivation

- vagueness often modeled ad-hoc, e.g. \existsseverity.High in SNOMED CT
- more principled approach: fuzzy sets

\[\text{Tall} \]

(Zadeh 1965)
Motivation

- vagueness often modeled ad-hoc, e.g. $\exists \text{severity}. \text{High}$ in SNOMED CT
- more principled approach: fuzzy sets

 ![Fuzzy Sets Diagram](image)

 - mathematical fuzzy logic
 - combination of vague predicates via suitable functions

Happy \cap Successful

(Zadeh 1965)

(Hájek 2001)
Mathematical Fuzzy Logic

Happy \sqcap Successful
Mathematical Fuzzy Logic

Happy \(\sqcap \) Successful

- **t-norm** \(\otimes : [0, 1] \times [0, 1] \rightarrow [0, 1] \):
 associative, commutative, monotone, unit 1, (continuous)
Mathematical Fuzzy Logic

Happy \cap Successful

- **t-norm** $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]$:
 associative, commutative, monotone, unit 1, (continuous)

- **residuum** $\Rightarrow: [0, 1] \times [0, 1] \rightarrow [0, 1]$:
 $(x \otimes y) \leq z$ iff $y \leq (x \Rightarrow z)$
Mathematical Fuzzy Logic

Happy \sqcap Successful

- **t-norm** $\otimes: [0, 1] \times [0, 1] \to [0, 1]$: associative, commutative, monotone, unit 1, (continuous)
- **residuum** $\Rightarrow: [0, 1] \times [0, 1] \to [0, 1]$: $(x \otimes y) \leq z$ iff $y \leq (x \Rightarrow z)$
- **involutive negation** $1 - x$

Wien, July 23rd, 2014
Mathematical Fuzzy Logic

Happy □ Successful

- **t-norm** \(\otimes : [0, 1] \times [0, 1] \rightarrow [0, 1]
 \) associative, commutative, monotone, unit 1, (continuous)
- **residuum** \(\Rightarrow : [0, 1] \times [0, 1] \rightarrow [0, 1]
 \) \((x \otimes y) \leq z \iff y \leq (x \Rightarrow z) \)
- involutive negation \(1 - x \)

- **Gödel** \((G) : \min\{x, y\} \)

![Diagram showing the Gödel t-norm](image_url)
Mathematical Fuzzy Logic

- t-norm $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]$: associative, commutative, monotone, unit 1, (continuous)
- residuum $\Rightarrow: [0, 1] \times [0, 1] \rightarrow [0, 1]$: $(x \otimes y) \leq z$ iff $y \leq (x \Rightarrow z)$
- involutive negation $1 - x$

- Gödel (G): $\min\{x, y\}$
- Product (Π): $x \cdot y$

Wien, July 23rd, 2014
Mathematical Fuzzy Logic

Happy \sqcap \text{Successful}

- **t-norm** $\otimes: [0, 1] \times [0, 1] \to [0, 1]$:
 associative, commutative, monotone, unit 1, (continuous)
- **residuum** $\Rightarrow: [0, 1] \times [0, 1] \to [0, 1]$:
 $(x \otimes y) \leq z$ iff $y \leq (x \Rightarrow z)$
- **involutive negation** $1 - x$

- **Gödel** (G): $\min\{x, y\}$
- **Product** (Π): $x \cdot y$
- **Łukasiewicz** ($Ł$): $\max(0, x + y - 1)$

Wien, July 23rd, 2014
Decidable Gödel DLs without the FVMP
The Fuzzy DL \mathcal{IALC}

Fuzzy interpretations $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$:
- concept names: $\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \rightarrow [0, 1]$
- role names: $\text{hasFriend}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \rightarrow [0, 1]$
- individual names: $\text{stefan}^\mathcal{I} \in \Delta^\mathcal{I}$
The Fuzzy DL G-\mathcal{IALC}

Fuzzy interpretations $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$:

- concept names: $\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \rightarrow [0, 1]$
- role names: $\text{hasFriend}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \rightarrow [0, 1]$
- individual names: $\text{stefan}^\mathcal{I} \in \Delta^\mathcal{I}$

Constructors:

- top $\top^\mathcal{I}(x) = 1$
- conjunction $(\text{Happy} \sqcap \text{Successful})^\mathcal{I}(x) = \min(\text{Happy}^\mathcal{I}(x), \text{Successful}^\mathcal{I}(x))$
The Fuzzy DL G-$\mathcal{I}ALC$

Fuzzy interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$:

- concept names: $\text{Happy}^{\mathcal{I}} : \Delta^{\mathcal{I}} \rightarrow [0, 1]$
- role names: $\text{hasFriend}^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \rightarrow [0, 1]$
- individual names: $\text{stefan}^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Constructors:

- top $\top^{\mathcal{I}}(x) = 1$
- conjunction $(\text{Happy} \sqcap \text{Successful})^{\mathcal{I}}(x) = \min(\text{Happy}^{\mathcal{I}}(x), \text{Successful}^{\mathcal{I}}(x))$
- existential restriction

 $\exists\text{hasFriend}.\text{Happy}^{\mathcal{I}}(x) = \sup_{y \in \Delta^{\mathcal{I}}} \min(\text{hasFriend}^{\mathcal{I}}(x, y), \text{Happy}^{\mathcal{I}}(y))$
The Fuzzy DL G-$\mathcal{I}ALC$

Fuzzy interpretations $\mathcal{I} = (\Delta^\mathcal{I}, .^\mathcal{I})$:
- concept names: $\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \to [0, 1]$
- role names: $\text{hasFriend}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \to [0, 1]$
- individual names: $\text{stefan}^\mathcal{I} \in \Delta^\mathcal{I}$

Constructors:
- top $\top^\mathcal{I}(x) = 1$
- conjunction $(\text{Happy} \sqcap \text{Successful})^\mathcal{I}(x) = \min(\text{Happy}^\mathcal{I}(x), \text{Successful}^\mathcal{I}(x))$
- existential restriction
 $$(\exists \text{hasFriend}. \text{Happy})^\mathcal{I}(x) = \sup_{y \in \Delta^\mathcal{I}} \min(\text{hasFriend}^\mathcal{I}(x, y), \text{Happy}^\mathcal{I}(y))$$
- $\text{Successful} \rightarrow \text{Happy, } \neg \text{Happy, } \forall \text{hasFriend}. \text{Successful}$
The Fuzzy DL G-\(\mathcal{ALC}\)

Fuzzy interpretations \(\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})\):

- concept names: \(\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \rightarrow [0, 1]\)
- role names: \(\text{hasFriend}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \rightarrow [0, 1]\)
- individual names: \(\text{stefan}^\mathcal{I} \in \Delta^\mathcal{I}\)

Constructors:

- top \(\top^\mathcal{I}(x) = 1\)
- conjunction \((\text{Happy} \sqcap \text{Successful})^\mathcal{I}(x) = \min(\text{Happy}^\mathcal{I}(x), \text{Successful}^\mathcal{I}(x))\)
- existential restriction
 \[(\exists \text{hasFriend}.\text{Happy})^\mathcal{I}(x) = \sup_{y \in \Delta^\mathcal{I}} \min(\text{hasFriend}^\mathcal{I}(x, y), \text{Happy}^\mathcal{I}(y)) \]
- \(\text{Successful} \rightarrow \text{Happy}, \neg \text{Happy}, \forall \text{hasFriend}.\text{Successful}\)

Witnessed interpretations: \(^{(\text{Hájek 2005})}\)

\[(\exists \text{hasFriend}.\text{Happy})^\mathcal{I}(x) = \max_{y \in \Delta^\mathcal{I}} \min(\text{hasFriend}^\mathcal{I}(x, y), \text{Happy}^\mathcal{I}(y)) \]
Reasoning

Axioms: order assertions

\langle \text{hasFriend: (stefan, felix) } \geq 0.7 \rangle \quad \langle \text{felix: Successful } > \text{ rafael: Successful} \rangle
Reasoning

Axioms: order assertions and general concept inclusions (GCIs)

\(\langle \text{hasFriend} : (\text{stefan, felix}) \geq 0.7 \rangle \quad \langle \text{felix: Successful} > \text{rafael: Successful} \rangle \)

\(\langle \exists \text{hasFriend.} \neg \text{Happy} \sqsubseteq \neg \text{Happy} \geq 0.6 \rangle \)
Reasoning

Axioms: order assertions and general concept inclusions (GCIs)

\langle \text{hasFriend}: (\text{stefan}, \text{felix}) \geq 0.7 \rangle \langle \text{felix}: \text{Successful} > \text{rafael}: \text{Successful} \rangle

\langle \exists \text{hasFriend}. \neg \text{Happy} \sqsubseteq \neg \text{Happy} \geq 0.6 \rangle

(\exists \text{hasFriend}. \neg \text{Happy})^\mathcal{I}(x) \Rightarrow (\neg \text{Happy})^\mathcal{I}(x) \geq 0.6
Reasoning

Axioms: order assertions and general concept inclusions (GCIs)

$$\langle \text{hasFriend} : (\text{stefan, felix}) \geq 0.7 \rangle \quad \langle \text{felix} : \text{Successful} > \text{rafael} : \text{Successful} \rangle$$

$$\langle \exists \text{hasFriend}. \neg \text{Happy} \sqsubseteq \neg \text{Happy} \geq 0.6 \rangle$$

$$(\exists \text{hasFriend}. \neg \text{Happy})^\mathcal{I}(x) \Rightarrow (\neg \text{Happy})^\mathcal{I}(x) \geq 0.6$$

$$\min(0.6, (\exists \text{hasFriend}. \neg \text{Happy})^\mathcal{I}(x)) \leq (\neg \text{Happy})^\mathcal{I}(x)$$
Reasoning

Axioms: order assertions and general concept inclusions (GCIs)

\[\langle \text{hasFriend} : (\text{stefan, felix}) \geq 0.7 \rangle \quad \langle \text{felix} : \text{Successful} > \text{rafael} : \text{Successful} \rangle \]

\[\langle \exists \text{hasFriend}. \neg \text{Happy} \sqsubseteq \neg \text{Happy} \geq 0.6 \rangle \]

\[(\exists \text{hasFriend}. \neg \text{Happy})^\mathcal{I}(x) \Rightarrow (\neg \text{Happy})^\mathcal{I}(x) \geq 0.6 \]

\[\min(0.6, (\exists \text{hasFriend}. \neg \text{Happy})^\mathcal{I}(x)) \leq (\neg \text{Happy})^\mathcal{I}(x) \]

Reasoning tasks:

- **consistency:**
 Does \(\mathcal{O} \) have a witnessed model?

- **satisfiability** to degree \(p \):
 Is there a witnessed model of \(\mathcal{O} \) such that \(C^\mathcal{I}(x) \geq p \) for some \(x \)?

- **subsumption** to degree \(p \):
 Is \(\langle C \sqsubseteq D \geq p \rangle \) satisfied by all witnessed models of \(\mathcal{O} \)?
Reasoning

Axioms: order assertions and general concept inclusions (GCIs)

\(\langle \text{hasFriend} : (\text{stefan, felix}) \geq 0.7 \rangle \langle \text{felix} : \text{Successful} > \text{rafael} : \text{Successful} \rangle \)

\(\langle \exists \text{hasFriend}. \neg \text{Happy} \sqsubseteq \neg \text{Happy} \geq 0.6 \rangle \)

\((\exists \text{hasFriend}. \neg \text{Happy})^\mathcal{I}(x) \Rightarrow (\neg \text{Happy})^\mathcal{I}(x) \geq 0.6 \)

\(\min(0.6, (\exists \text{hasFriend}. \neg \text{Happy})^\mathcal{I}(x)) \leq (\neg \text{Happy})^\mathcal{I}(x) \)

Reasoning tasks:

- **consistency:**
 Does \(\mathcal{O} \) have a witnessed model?

- **satisfiability to degree \(p \):**
 Is there a witnessed model of \(\mathcal{O} \) such that \(C^\mathcal{I}(x) \geq p \) for some \(x \)?

- **subsumption to degree \(p \):**
 Is \(\langle C \sqsubseteq D \geq p \rangle \) satisfied by all witnessed models of \(\mathcal{O} \)?

- What is the best satisfiability/subsumption degree?
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.

- Π-\mathcal{AL} and Ł-\mathcal{AL} do not have the FVMP. (Bobillo, Bou, and Straccia 2011)

- Consistency in Π-\mathcal{I}-\mathcal{AL} is undecidable. (Baader and Peñaloza 2011; Borgwardt and Peñaloza 2012)

- Consistency in Ł-\mathcal{I}-\mathcal{AL} is undecidable. (Cerami and Straccia 2013)

- Π-\mathcal{I}-\mathcal{AL} and G-\mathcal{I}-\mathcal{AL} with only \geq-assertions have the FVMP and decidable consistency problems. (Borgwardt, Distel, and Peñaloza 2012)

- Consistency in Finitely-Valued Fuzzy DLs is decidable. (Bobillo and Straccia 2013; Borgwardt and Peñaloza 2013)
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.

- \(\Pi\text{-}\mathcal{AL}\) and \(\mathcal{L}\text{-}\mathcal{AL}\) do not have the FVMP. \hfill (Bobillo, Bou, and Straccia 2011)
- Consistency in \(\Pi\text{-}\mathcal{AL}\) is undecidable. \hfill (Baader and Peñaloza 2011; Borgwardt and Peñaloza 2012)
- \(\Pi\text{-}\mathcal{I}\mathcal{AL}\) and \(G\text{-}\mathcal{I}\mathcal{AL}\) with only \(\geq\)-assertions have the FVMP and decidable consistency problems. \hfill (Borgwardt, Distel, and Peñaloza 2012)
- Consistency in Finitely-Valued Fuzzy DLs is decidable. \hfill (Bobillo and Straccia 2013; Borgwardt and Peñaloza 2013)

\(\text{FVMP} \equiv \text{decidability?}\)
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.

• \(\Pi - \mathcal{AL} \) and \(\mathcal{L} - \mathcal{AL} \) do not have the FVMP. (Bobillo, Bou, and Straccia 2011)
• Consistency in \(\Pi - \mathcal{IAL} \) is undecidable. (Baader and Peñaloza 2011; Borgwardt and Peñaloza 2012)
• Consistency in \(\mathcal{L} - \mathcal{IAL} \) is undecidable. (Cerami and Straccia 2013)

FVMP \iff \text{decidability?}

Gödel DLs without the FVMP
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.

- Π-\mathcal{AL} and Ł-\mathcal{AL} do not have the FVMP. (Bobillo, Bou, and Straccia 2011)
- Consistency in Π-\mathcal{IAL} is undecidable. (Baader and Peñaloza 2011; Borgwardt and Peñaloza 2012)
- Consistency in Ł-\mathcal{IAL} is undecidable. (Cerami and Straccia 2013)
- Π-\mathcal{IAL} and G-\mathcal{IAL} with only \geq-assertions have the FVMP and decidable consistency problems. (Borgwardt, Distel, and Peñaloza 2012)
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.

- **Π-\textit{AL}** and **Ł-\textit{AL}** do not have the FVMP.
 (Bobillo, Bou, and Straccia 2011)

- Consistency in **Π-\textit{IAL}** is undecidable.
 (Baader and Peñaloza 2011; Borgwardt and Peñaloza 2012)

- Consistency in **Ł-\textit{IAL}** is undecidable.
 (Cerami and Straccia 2013)

- **Π-\textit{IAL}** and **G-\textit{IAL}** with only \(\geq\)-assertions have the FVMP and decidable consistency problems.
 (Borgwardt, Distel, and Peñaloza 2012)

- Consistency in Finitely-Valued Fuzzy DLs is decidable.
 (Bobillo and Straccia 2013; Borgwardt and Peñaloza 2013)
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.

- $\Pi\mathcal{AL}$ and $\mathcal{L}\mathcal{AL}$ do not have the FVMP. (Bobillo, Bou, and Straccia 2011)
- Consistency in $\Pi\mathcal{IAL}$ is undecidable. (Baader and Peñaloza 2011; Borgwardt and Peñaloza 2012)
- Consistency in $\mathcal{L}\mathcal{IAL}$ is undecidable. (Cerami and Straccia 2013)
- $\Pi\mathcal{IAL}$ and $G\mathcal{IAL}$ with only \geq-assertions have the FVMP and decidable consistency problems. (Borgwardt, Distel, and Peñaloza 2012)
- Consistency in Finitely-Valued Fuzzy DLs is decidable. (Bobillo and Straccia 2013; Borgwardt and Peñaloza 2013)

$\text{FVMP} \equiv \text{decidability} \ ?$
The Finitely-Valued Model Property

FVMP: Every consistent ontology has a model that uses only finitely many values.

- \(\Pi\mathcal{AL}\) and \(\mathcal{AL}\) do not have the FVMP.
 (Bobillo, Bou, and Straccia 2011)

- Consistency in \(\Pi\mathcal{IAL}\) is undecidable.
 (Baader and Peñaloza 2011; Borgwardt and Peñaloza 2012)

- Consistency in \(\mathcal{IAL}\) is undecidable.
 (Cerami and Straccia 2013)

- \(\Pi\mathcal{IAL}\) and \(G\mathcal{IAL}\) with only \(\geq\)-assertions have the FVMP and decidable consistency problems.
 (Borgwardt, Distel, and Peñaloza 2012)

- Consistency in Finitely-Valued Fuzzy DLs is decidable.
 (Bobillo and Straccia 2013; Borgwardt and Peñaloza 2013)

\[\text{FVMP} \equiv \text{decidability} ?\]

\(G\mathcal{IALC}\) does not have the FVMP, but consistency is decidable.
The Finitely-Valued Model Property in G-\(\mathcal{AL}\)

\[
x \Rightarrow y = \begin{cases}
1 & \text{if } x \leq y \\
y & \text{otherwise}
\end{cases}
\]

\[
\langle \text{felix: Happy } = 0.8 \rangle \quad \langle \forall \text{hasFriend.Happy } \sqsubseteq \text{ Happy} \rangle \quad \langle \exists \text{hasFriend.T } \sqsubseteq \text{ Happy} \rangle
\]
The Finitely-Valued Model Property in G-\mathcal{AL}

\[x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases} \]

\[\langle \text{felix: Happy } = 0.8 \rangle \quad \langle \forall \text{hasFriend.Happy } \sqsubseteq \text{Happy} \rangle \quad \langle \exists \text{hasFriend.} T \sqsubseteq \text{Happy} \rangle \]

Happy : 0.8
The Finitely-Valued Model Property in G-$\cal L$

\[x \Rightarrow y = \begin{cases}
1 & \text{if } x \leq y \\
y & \text{otherwise}
\end{cases} \]

\[\langle \text{felix: Happy } = 0.8 \rangle \quad \langle \forall \text{hasFriend.Happy } \sqsubseteq \text{ Happy} \rangle \quad \langle \exists \text{hasFriend.T } \sqsubseteq \text{ Happy} \rangle \]

\[\text{hasFriend}(x, y) \Rightarrow \text{Happy}(y) \leq \text{Happy}(x) \quad \text{hasFriend}(x, y) \leq \text{Happy}(x) \]

\[\begin{align*}
\text{hasFriend: 0.8} & \\
\text{Happy: 0.8} & > \quad \text{Happy: 0.7}
\end{align*} \]
The Finitely-Valued Model Property in G-\mathcal{AL}

\[x \Rightarrow y = \begin{cases}
1 & \text{if } x \leq y \\
\top & \text{otherwise}
\end{cases} \]

\[
\langle \text{felix}: \text{Happy} = 0.8 \rangle \quad \langle \forall \text{hasFriend}. \text{Happy} \sqsubseteq \text{Happy} \rangle \quad \langle \exists \text{hasFriend}. \mathbf{T} \sqsubseteq \text{Happy} \rangle
\]

\[
\text{hasFriend}(x, y) \Rightarrow \text{Happy}(y) \leq \text{Happy}(x)
\]

\[
\text{hasFriend}(x, y) \leq \text{Happy}(x)
\]

\[
\text{Happy}: 0.8 > \text{Happy}: 0.7 > \text{Happy}: 0.65
\]
Only the Order Matters

Happy: 0.8

hasFriend: 0.8

Happy: 0.7

hasFriend: 0.7

Happy: 0.65

Wien, July 23rd, 2014
Decidable Gödel DLs without the FVMP
Only the Order Matters

HasFriend: 0.8
Happy: 0.8

HasFriend: 0.7
Happy: 0.7

HasFriend: 0.65
Happy: 0.65

abstract:

Happy = 0.8

0 < Happy < hasFriend ≤ Happy↑ = 0.8

0 < Happy < hasFriend ≤ Happy↑ < 0.8
Only the Order Matters

Happy: 0.8 hasFriend: 0.8 Happy: 0.7 hasFriend: 0.7 Happy: 0.65

abstract:

Happy = 0.8 0 < Happy < hasFriend ≤ Happy↑ = 0.8 0 < Happy < hasFriend ≤ Happy↑ < 0.8

Hintikka trees consisting of Hintikka orderings:

0 < ∀hasFriend.Happy < Happy ≡ ∃hasFriend.⊤ ≡ (∀hasFriend.Happy)↑ < hasFriend ≡ A↑ ≡ (∃hasFriend.⊤)↑ < 0.2 < 0.5 < 0.8 < 1 ≡ ⊤ ≡ ⊤↑
Only the Order Matters

Hintikka trees consisting of Hintikka orderings:

\[0 < \forall \text{hasFriend}. \text{Happy} < \text{Happy} \equiv \exists \text{hasFriend}. \top \equiv (\forall \text{hasFriend}. \text{Happy})_\uparrow < \text{hasFriend} \equiv A_\uparrow \equiv (\exists \text{hasFriend}. \top)_\uparrow < 0.2 < 0.5 < 0.8 < 1 \equiv \top \equiv \top_\uparrow \]

looping tree automata of exponential size $\sim\text{EXPTIME}$
Reasoning is \textit{EXPTIME}-complete

\textbf{Pre-completion for consistency:}

\begin{itemize}
 \item Happy is satisfiable to degree p w.r.t. O iff $O \cup \{\langle a: \text{Happy} \geq p \rangle\}$ is consistent
 \item Successful is subsumed by Happy to degree p w.r.t. O iff $O \cup \{\langle a: \text{Successful} \rightarrow \text{Happy} < p \rangle\}$ is inconsistent
\end{itemize}
Reasoning is \textsc{EXPTIME}-complete

Pre-completion for consistency:
Reasoning is EXPTIME-complete

Pre-completion for consistency:
Reasoning is EXP\textsc{TIME}-complete

Pre-completion for consistency:

Happy is satisfiable to degree p w.r.t. \mathcal{O}

iff $\mathcal{O} \cup \{ \langle a : \text{Happy} \geq p \rangle \}$ is consistent

Successful is subsumed by Happy to degree p w.r.t \mathcal{O}

iff $\mathcal{O} \cup \{ \langle a : \text{Successful} \rightarrow \text{Happy} < p \rangle \}$ is inconsistent
Conclusions

Summary:

- G-\textit{IALC} not as easy as thought, but still decidable
- General model semantics \cite{borgwardt2014general}
- Undecidable for all other t-norms \cite{borgwardt2012undecidable}

Future Work:

- \textit{PS \textit{PACE}} bounds for acyclic TBoxes \cite{borgwardt2013ps}
- Transitive and inverse roles, role hierarchy, nominals \cite{borgwardt2014transitive}
- Tableaux algorithm

Thank you
Conclusions

Summary:

- G-\(\mathcal{ALC}\) not as easy as thought, but still decidable
- general model semantics (Borgwardt, Distel, and Peñaloza 2014)
- undecidable for all other t-norms (Borgwardt and Peñaloza 2012)
- G\ödel\ extensions of small DLs easier
 (Borgwardt, Leyva Galano, and Peñaloza 2014; Mailis et al. 2012)

Future Work:

- PS PACE bounds for acyclic TBoxes (Borgwardt and Peñaloza 2013)
- transitive and inverse roles, role hierarchy, nominals (Borgwardt 2014)
- tableaux algorithm
Conclusions

Summary:

- G-*IALC* not as easy as thought, but still decidable
- general model semantics (Borgwardt, Distel, and Peñaloza 2014)
- undecidable for all other t-norms (Borgwardt and Peñaloza 2012)
- Gödel extensions of small DLs easier
 (Borgwardt, Leyva Galano, and Peñaloza 2014; Mailis et al. 2012)

Future Work:

- PSPACE bounds for acyclic TBoxes (Borgwardt and Peñaloza 2013)
- transitive and inverse roles, role hierarchy, nominals (Borgwardt 2014)
- tableaux algorithm
Conclusions

Summary:

- $\mathcal{G-ILC}$ not as easy as thought, but still decidable
- general model semantics (Borgwardt, Distel, and Peñaloza 2014)
- undecidable for all other t-norms (Borgwardt and Peñaloza 2012)
- Gödel extensions of small DLs easier (Borgwardt, Leyva Galano, and Peñaloza 2014; Mailis et al. 2012)

Future Work:

- PSPACE bounds for acyclic TBoxes (Borgwardt and Peñaloza 2013)
- transitive and inverse roles, role hierarchy, nominals (Borgwardt 2014)
- tableaux algorithm

Thank you
References I