

Making DL-Lite Planning Practical

Stefan Borgwardt

Jörg Hoffmann

Alisa Kovtunova

Marcel Steinmetz

Al planning + static reasoning:

Making Explicit-input Knowledge and Action Bases (eKABs) More Practical

(Calvanese, Montali, Patrizi, and Stawowy 2016)

Example: Lift Control

Planning Domain Definition Language (PDDL)

(:objects pa pb ... fa fb ...)

(:init

(passenger pa)
(origin pa fe)
(destin pa fa)

```
(lift_at fa)
```

```
(:goal (not (exists (?x)
      (and
        (passenger ?x)
        (not (served ?x))
) ) ))
```

(:action stop

```
Closed-world states
{passenger(pa), origin(pa,fe), ...}
```

Fixed domain

First-order formulas (closed-world semantics)

 $\neg \exists x. passenger(x) \land \neg served(x)$

(mko (passenger ?p)) ontology

Not suited for state-of-the-art planners:

- FO-formulas need to be pre-processed into ground DNF
- grounded UCQs are in DNF, but nested in other formulas

Our solution: Replace complex subformulas by new predicates $\Phi = (\text{or } \Phi_1 \ \Phi_2) \longmapsto P_{\Phi}$

- (Nebel 2000): introduce new actions to re-evaluate P_{Φ}
- New approach: use derived predicates: (:derived P_{Φ} (or $\Phi_1 \Phi_2$))

Experiments

Existing eKAB benchmarks: Robot, TaskAssign

(Calvanese, Montali, Patrizi, and Stawowy 2016)

(passenger ?p) (boarded ?p) (served ?p)

(exists (?x) (origin ?p ?x))

(exists (?x) (destin ?p ?x))

Rewriting ECQs into PDDL

Use standard techniques to rewrite CQs into closed-world UCQs:

(or

(and (origin ?p ?f) (not (served ?p)))
(boarded ?p) Effect: add boarded(p) to the state

(when

(and (destin ?p ?f) (boarded ?p)) destin(p,f) ^ boarded(p)
(and (served ?p) (not (boarded ?p)))
) Effect: add served(p), remove boarded(p)

(:action move-up ...

eKABs

(Calvanese, Montali, Patrizi, and Stawowy 2016)

Effects operate on open-world states (ABoxes)

Additional background ontology (DL-Lite_{\mathcal{F}}):

(:axioms

• • •

(isA served passenger)

(isA boarded passenger)

(isA passenger (not floor))

(isA (exists origin) passenger)
(isA (exists destin) passenger)

(isA (exists (inverse origin)) floor)

served ⊑ passenger
boarded ⊑ passenger
passenger ⊑ ¬floor
dorigin ⊑ passenger
destin ⊑ passenger
dorigin ⊑ floor

Adapted planning benchmarks: Cats, Elevator

Adapted web service composition benchmarks: TPSA, VTA(-Roles) (Hoffmann, Weber, Scicluna, Kacmarek, and Ankolekar 2008)

Planning benchmarks with complex conditions: Assembly, Miconic

Artificial benchmark with huge CNFs: GridPlacement

			FF			FD		Planners
Domain	#	0	Ne	DP	0	Ne	DP	FF (Hoffmann and Nebel 200
Robot	20	20	1	20	4	1	20	FD 20.06 (Helmert 2006)
TaskAssign	20	1	1	15	3	1	20	PDDL variants
Cats	20	14	14	20	14	11	20	Original eKAR PDDI
Elevator	20	12	0	20	20	0	20	+ Nebel's encoding
TPSA	15	7	5	5	14	4	5	+ Derived Predicates
VTA	15	15	6	15	15	4	13	· <u>Derived Fredicates</u>
VTA-Roles	15	5	4	5	15	0	5	Metric
Assembly	30	0	0	24	30	0	30	# instances solved
GridPl.	20	5	1	17	6	2	20	Intel Core i5-4590
Miconic	30	9	3	13	9	2	9	@3.30GHz, 8GB RAM,
\sum	205	88	35	154	130	25	162	600s timeout

Conditions are epistemic conjunctive queries (ECQs) (FO-formulas where the atoms are CQs with minimal-knowledge-operator): (and (mko (lift_at ?f)) (mko (passenger ?p)))

(Calvanese, De Giacomo, Lembo, Lenzerini, and Rosati 2007)

Summary

Simple pre-processing for eKAB PDDL encodings improves performance and can even help solve standard planning benchmarks.

References

Calvanese, Diego, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati (2007). "EQL-Lite: Effective First-Order Query Processing in Description Logics". In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI'07), pages 274–279. URL: https://www.ijcai.org/Abstract/07/042.

Calvanese, Diego, Marco Montali, Fabio Patrizi, and Michele Stawowy (2016). "Plan Synthesis for Knowledge and Action Bases". In: Proc. of the 25th Int. Joint Conf. on Artificial Intelligence (IJCAI'16), pages 1022–1029. URL: https://www.ijcai.org/Abstract/16/149.

Helmert, Malte (2006). "The Fast Downward Planning System". In: Journal of Artificial Intelligence Research 26, pages 191–246. DOI: 10.1613/jair.1705.

Hoffmann, Jörg and Bernhard Nebel (2001). "The FF Planning System: Fast Plan Generation Through Heuristic Search". In: Journal of Artificial Intelligence Research 14, pages 253–302. DOI: 10.1613/jair.855.

Hoffmann, Jörg, Ingo Weber, James Scicluna, Tomasz Kacmarek, and Anupriya Ankolekar (2008). "Combining Scalability and Expressivity in the Automatic Composition of Semantic Web Services". In: 8th International Conference on Web Engineering (ICWE'08). DOI: 10.1109/ICWE.2008.8.

Nebel, Bernhard (2000). "On the Compilability and Expressive Power of Propositional Planning Formalisms". In: Journal of Artificial Intelligence Research 12, pages 271–315. DOI: 10.1613/jair.735.