Example: Lift Control

Planning Domain Definition Language (PDDL)

- **Fixed domain**
 - (objects pa pb ... fa fb ...)
- **Closed-world states**
 - (init)
 - (passenger pa)
 - (origin pa fe)
 - (destin pa fa)

- **First-order formulas (closed-world semantics)**
 - (goal (not (exists (?x) (passenger x)))

- **Effect**
 - (lift_at(f) ^ passenger(p))
 - (and (origin(p,f) ^ served(p)))

- **Parameters**
 - (?p ?f)

Rewriting ECQs into PDDL

Use standard techniques to rewrite CQs into closed-world UCQs:

- (and (lift_at(f) ^ passenger(p)))

Not suited for state-of-the-art planners:
- FO-formulas need to be pre-processed into ground DNF
- grounded UCQs are in DNF, but nested in other formulas

Our solution: Replace complex subformulas by new predicates

- (Φ = (Φ₁, Φ₂))

Experiments

Existing eKAB benchmarks: Robot, TaskAssign

Adapted planning benchmarks: Cats, Elevator

Adapted web service composition benchmarks: TPSA, VTA(-Roles)

Planning benchmarks with complex conditions: Assembly, Miconic

Artificial benchmark with huge CNFs: GridPlacement

Summary

- Simple pre-processing for eKAB PDDL encodings improves performance and can even help solve standard planning benchmarks.