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Fuzzy Description Logics

• Represent vague concepts and roles

CheapHotel, isNear, Fuzzy

• Semantics generalize {false, true} to more truth values

interval [0, 1], finite chain {0, 1n , . . . , n−1n , 1}, (finite) lattice L
• Fuzzy concepts interpreted as fuzzy setsΔI → L

L
Δ
I

CheapHotelI

• Syntax remains the same

ALC: >, ⊥, u, t, ¬, (→), ∃r, ∀r
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Fuzzy Semantics over [0, 1]

• Truth-functionality: truth degree of concepts computed recursively

(Cheap uHotel)I(d) = CheapI(d)⊗HotelI(d)

• Different functions for conjunction (⊗), implication (⇒), negation (	)

Zadeh (1965): min{x, y} max{1− x, y} 1− x
• Concept interpretations are lifted according to fuzzy first-order logic

d ∈ (∀r.C)I iff ∀e ∈ ΔI . (d, e) ∈ rI → e ∈ CI
(∀r.C)I(d) = infe∈ΔI rI(d, e)⇒ CI(e)

(∀isNear.CheapHotel)I(d) = 0.6: d 0.30.5

0.9

0.7

0.2

0.4

0.6

1.0
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Other Fuzzy Semantics over [0, 1]

• Conjunctions interpreted by t-norms, implications by their residua

Conjunction x ⊗ y Implication x ⇒ y Negation 	x := x ⇒ 0
Zadeh min{x, y} max{1− x, y} 1− x
Gödel min{x, y}

{
1 if x ≤ y
y if x > y

{
1 if x = 0
0 if x > 0

Product x · y
{
1 if x ≤ y
y/x if x > y

{
1 if x = 0
0 if x > 0

Łukasiewicz max{x + y − 1, 0} min{1− x + y, 1} 1− x

• Fuzzy axioms encode fuzzy knowledge

Concept inclusions: PopularPlace v ∀isNear.¬CheapHotel ≥ 0.7
Inequality assertions: CheapHotel(xyzHotel) ≥ 0.7
Equality assertions: CheapHotel(xyzHotel) = 0.7

Fuzzy Description Logics and Probabilistic Databases

Chair of Automata Theory // © Stefan Borgwardt

Dresden, 26th June 2018

Slide 3 of 14



Other Fuzzy Semantics over [0, 1]

• Conjunctions interpreted by t-norms, implications by their residua

Conjunction x ⊗ y Implication x ⇒ y Negation 	x := x ⇒ 0
Zadeh min{x, y} max{1− x, y} 1− x
Gödel min{x, y}

{
1 if x ≤ y
y if x > y

{
1 if x = 0
0 if x > 0

Product x · y
{
1 if x ≤ y
y/x if x > y

{
1 if x = 0
0 if x > 0

Łukasiewicz max{x + y − 1, 0} min{1− x + y, 1} 1− x
• Fuzzy axioms encode fuzzy knowledge

Concept inclusions: PopularPlace v ∀isNear.¬CheapHotel ≥ 0.7
Inequality assertions: CheapHotel(xyzHotel) ≥ 0.7
Equality assertions: CheapHotel(xyzHotel) = 0.7

Fuzzy Description Logics and Probabilistic Databases

Chair of Automata Theory // © Stefan Borgwardt

Dresden, 26th June 2018

Slide 3 of 14



Complexity of Fuzzy ALC

Semantics Inequality assertions Equality assertions

Zadeh EXPTIME EXPTIME

Gödel EXPTIME EXPTIME

Product EXPTIME undecidable

Łukasiewicz undecidable undecidable

Fuzzy reasoning with concept inclusions is either

• undecidable (Borgwardt and Peñaloza 2012; Cerami and Straccia 2013)

• trivial (equivalent to classical ALC) (Borgwardt, Distel, and Peñaloza 2014)

• (non-trivially) reducible to classical ALC (Bobillo, Delgado, Gómez-Romero,
and Straccia 2012; Borgwardt and Peñaloza 2017)

• undecidable even for EL (Borgwardt, Cerami, and Peñaloza 2017)
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Finitely-Valued Fuzzy ALC

• Finite lattices L allow incomparable degrees of truth
t

u b

f

3

2

1

0

• Can be reduced to classical DLs via cuts

isNear≥2 InterestingTalk≥u

• Fuzzy reasoning at relatively low cost:

– reduction with quadratic blow-up in |L| (Bobillo and Straccia 2013;

Borgwardt, Mailis, Peñaloza, and Turhan 2016)

– direct tableaux algorithm (Straccia 2006; Borgwardt and Peñaloza 2014)
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DeepDive

NELL

Google’s Knowledge Vault

SlimShot

Tuffy

Lifted Inference

Probabilistic Databases (PDBs)
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Probabilistic Databases (PDBs)

WriterBanks 0.8
Hamilton 0.7

AuthorOfBanks Excession 0.9
Banks Inversions 0.8

Stephenson Anathem 0.9

NovelAnathem 1
Matter 0.7

Possible worlds D:Writer(Banks), AuthorOf (Banks,Excession) , . . . Finite

Probability P(D): 0.8 · (1− 0.9) · · · ·
Tuple-independent

Probabilistic query evaluation
Q : ∃x.AuthorOf (Banks, x)

P(Q) =
∑
D|=Q

P(D)

= 0.8 · (1− 0.9) · 0.8 · · · ·+ · · · = 0.98

P(Writer (Stephenson)) = 0 Closed-world
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Ontology-Mediated Probabilistic Queries

WriterBanks 0.8
Hamilton 0.7

AuthorOfBanks Excession 0.9
Banks Inversions 0.8

Stephenson Anathem 0.9

NovelAnathem 1
Matter 0.7

∃AuthorOf.Novel vWriter

Ontology-Mediated Queries (OMQs)
( conjunctive query Q , ontology O )

P(Q,O) =
∑

D|=(Q,O)

P(D)

P
(
Writer(Stephenson), {∃AuthorOf.Novel vWriter}

)
= 0.9

Not tuple-independent
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Rewritability

UCQ-rewritability of (Q,O): D |= (Q,O) iff D |= QO

 Probability of (Q,O): P(Q,O) = P(QO)

Dichotomy
For UCQ-rewritable (Q,O),
deciding P(Q,O) > p is either in P (“safe”) or PP-complete (“unsafe”).

(Dalvi and Suciu 2012)

(Jung and Lutz 2012; Borgwardt, Ceylan, and Lukasiewicz 2017)
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Safe and Unsafe Queries

O: ∃AuthorOf.Novel vWriter
∃CharacterIn.Novel v LiteraryCharacter

Safe Unsafe
Q: ∃x.Writer(x) ∧ LiteraryCharacter(x)

 

QO: ∃x, y, z.AuthorOf (x, y) ∧Novel(y) ∧ CharacterIn(x, z) ∧Novel(z) . . .

Unsafe Safe
Q: ∃x, y.Writer(x) ∧ AuthorOf (x, y) ∧Novel(y)

 
QO: ∃x, y.AuthorOf (x, y) ∧Novel(y)
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Inconsistency

Writer uNovel v ⊥

If D |= (⊥,O), then D |= (Q,O) trivially holds.
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Dealing With Inconsistency

Normalization
Pn(Q,O) =

P(Q,O)− P(⊥,O)
1− P(⊥,O)

After rewriting: Pn(Q,O) =
P(QO)− P(QO ∧ ⊥O)

1− P(⊥O)

Tuple probabilities are distorted, even if they are not affected by the cause

of the inconsistency (or other axioms)
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Dealing With Inconsistency (II)

Alternative:

Maximum Entropy Approach
Maximize: H(Pm) = −∑

D
Pm(D) logPm(D)

Subject to: ∑
D

Pm(D) = 1

Pm(D) = 0 if D |= (⊥,O)

Pm(t) = p for all 〈t : p〉 ∈ P

• Respects tuple probabilities
• May be infeasible use slack variables
• Challenging to compute Pm; area of active research
• Rewriting-based approaches possible
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Summary

Ontologies modeling can benefit from finitely many fuzzy degrees.

Probabilistic databases can benefit from ontologies.

Thank you!
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