FUZZY DESCRIPTION LOGICS WITH GENERAL CONCEPT INCLUSIONS

Stefan Borgwardt

Tautewalde, Sep 11, 2013
Motivation

laura:Human
laura:Female
laura:Happy
(laura, 1):has-age
laura:∃wears.Hat
laura:∃has-symptom.Cough
laura:∃has-disease.Cold
Human ⊓ ∃has-age.(≤12) ⊑ Child
Child ⊓ Female ⊑ Girl
Motivation

laura: Human
laura: Female
laura: Happy
(laura, 1): has-age
laura: \exists wears.Hat
laura: \exists has-symptom.Cough
laura: \exists has-disease.Cold
Human \sqcap \exists has-age.(\leq 12) \sqsubseteq Child
Child \sqcap Female \sqsubseteq Girl

... holds to degree / probability / possibility 0 ... 0.1 ... 0.5 ... 0.9 ... 1
Uncertainty and Vagueness

\[\text{Laura: } \exists \text{wears.Hat} \]
Uncertainty and Vagueness

\[
\text{laura} : \exists \text{wears.Hat}
\]

Probabilistic/Possibilistic DLs:

- probability/possibility distributions on possible worlds

\[
\text{Prob}-\text{SHOIN}(D) \quad (\text{Lukasiewicz 2008})
\]

\[
\text{Prob-ALC} \quad (\text{Lutz and Schröder 2010})
\]

\[
\text{ALCN} \text{ with possibilistic axioms} \quad (\text{Hollunder 1995})
\]

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

- two degrees of truth (false, true) are replaced by \([0, 1]\) (Zadeh 1965)
- fuzzy sets \(A: \Delta \rightarrow [0, 1]\) instead of sets \(A: \Delta \rightarrow \{0, 1\}\)
- conjunction, etc. are interpreted by appropriate truth functions
Uncertainty and Vagueness

\[
laura : \exists \text{wears.Hat}
\]

Probabilistic/Possibilistic DLs:
- probability/possibility distributions on possible worlds
- \(P\text{-SHOIN}(\mathbb{D})\) \hspace{1cm} (Lukasiewicz 2008)
- Prob-\text{ALC} \hspace{1cm} (Lutz and Schröder 2010)
- \text{ALCN} with possibilistic axioms \hspace{1cm} (Hollunder 1995)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs
Uncertainty and Vagueness

Probalistic/Possibilistic DLs:

- probability/possibility distributions on possible worlds
- P-SHOIN(D) (Lukasiewicz 2008)
- Prob-ALC (Lutz and Schröder 2010)
- $ALCN$ with possibilistic axioms (Hollunder 1995)

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

- two degrees of truth ($false$, $true$) are replaced by $[0, 1]$
- fuzzy sets $A : \Delta \rightarrow [0, 1]$ instead of sets $A : \Delta \rightarrow \{0, 1\}$
- conjunction, etc. are interpreted by appropriate truth functions

$laura: \exists wears.Hat$

$laura: Happy, (laura, elisabeth): likes$
Uncertainty and Vagueness

\[\text{laura:}\exists \text{wears.Hat} \]

Probabilistic/Possibilistic DLs:

- probability/possibility distributions on possible worlds
- \(P\text{-SHOIN}^D \) \((\text{Lukasiewicz 2008}) \)
- \(\text{Prob-ALC} \) \((\text{Lutz and Schröder 2010}) \)
- \(ALCN \) with possibilistic axioms \((\text{Hollunder 1995}) \)

\[\text{laura:Happy, (laura, elisabeth):likes} \]

Fuzzy DLs: \((\text{Straccia 2001; Tresp and Molitor 1998; Yen 1991}) \)

- two degrees of truth \((false, true) \) are replaced by \([0, 1] \) \((\text{Zadeh 1965}) \)
Uncertainty and Vagueness

\[\text{laura}: \exists \text{wears.Hat} \]

Probabilistic/Possibilistic DLs:
- probability/possibility distributions on possible worlds
- \(P\text{-SHOIN}(\mathbf{D}) \) (Lukasiewicz 2008)
- \(\text{Prob-ALC} \) (Lutz and Schröder 2010)
- \(\text{ALCN} \) with possibilistic axioms (Hollunder 1995)

\[\text{laura}: \text{Happy}, \quad (\text{laura, elisabeth}): \text{likes} \]

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)
- two degrees of truth (\textit{false, true}) are replaced by \([0, 1]\) (Zadeh 1965)
- fuzzy sets \(A: \Delta \rightarrow [0, 1] \) instead of sets \(A: \Delta \rightarrow \{0, 1\} \)
- conjunction, etc. are interpreted by appropriate \textit{truth functions}
Mathematical Fuzzy Logic

- t-norm \otimes: $[0, 1] \times [0, 1] \rightarrow [0, 1]$: associative, commutative, monotone, unit 1, (continuous)
Mathematical Fuzzy Logic

- t-norm $\otimes: [0, 1] \times [0, 1] \to [0, 1]$: associative, commutative, monotone, unit 1, (continuous)

- residuum $\Rightarrow: [0, 1] \times [0, 1] \to [0, 1]$: $x \otimes y \leq z$ iff $y \leq x \Rightarrow z$

- residual negation $\ominus x = x \Rightarrow 0$
Mathematical Fuzzy Logic

- **t-norm** $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]:$
 associative, commutative, monotone, unit 1, (continuous)

- **residuum** $\Rightarrow: [0, 1] \times [0, 1] \rightarrow [0, 1]:$
 $x \otimes y \leq z$ iff $y \leq x \Rightarrow z$

- **residual negation** $\ominus x = x \Rightarrow 0$

- **involutive negation** $\sim x = 1 - x$

- **t-conorm** $x \oplus y = \sim(\sim x \otimes \sim y)$
Mathematical Fuzzy Logic

- **t-norm** $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]$:
 associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:
- Gödel (G): $x \otimes y = \min\{x, y\}$

![Graph of continuous t-norms](image)
Mathematical Fuzzy Logic

- **t-norm** $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]$: associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:
- Gödel (G): $x \otimes y = \min\{x, y\}$
- Product (Π): $x \otimes y = x \cdot y$
Mathematical Fuzzy Logic

- **t-norm** $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]$: associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:
- **Gödel (G)**: $x \otimes y = \min\{x, y\}$
- **Product (Π)**: $x \otimes y = x \cdot y$
- **Łukasiewicz (Ł)**: $x \otimes y = \max(0, x + y - 1)$
Mathematical Fuzzy Logic

- **t-norm** \(\otimes : [0, 1] \times [0, 1] \to [0, 1] \):
 - associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:

- **Gödel** (\(G \)): \(x \otimes y = \min\{x, y\} \)
- **Product** (\(\Pi \)): \(x \otimes y = x \cdot y \)
- **Łukasiewicz** (\(\mathcal{L} \)): \(x \otimes y = \max(0, x + y - 1) \)
- **Ordinal sums**, e.g. \((0, 0.5, \Pi), (0.5, 1, \mathcal{L})\)
Mathematical Fuzzy Logic

- **t-norm** $\otimes: [0, 1] \times [0, 1] \rightarrow [0, 1]$:
 - associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:
- Gödel (G): $x \otimes y = \min\{x, y\}$
- Product (Π): $x \otimes y = x \cdot y$
- Łukasiewicz (L): $x \otimes y = \max(0, x + y - 1)$
- Ordinal sums, e.g. $(0, 0.5, \Pi), (0.5, 1, L)$
Fuzzy Description Logics

Fuzzy interpretations $\mathcal{I} = (\Delta^\mathcal{I}, \mathcal{I})$:

- concept names: $\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \rightarrow [0, 1]$
- role names: $\text{likes}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \rightarrow [0, 1]$
- individual names: $\text{laura}^\mathcal{I} \in \Delta^\mathcal{I}$
Fuzzy Description Logics

Fuzzy interpretations $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$:

- concept names: $\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \to [0, 1]$
- role names: $\text{likes}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \to [0, 1]$
- individual names: $\text{laura}^\mathcal{I} \in \Delta^\mathcal{I}$

\mathcal{EL}:

- conjunction $(C \sqcap D)^\mathcal{I}(x) = C^\mathcal{I}(x) \otimes D^\mathcal{I}(x)$
- top $\top^\mathcal{I}(x) = 1$
- existential restriction $(\exists r.C)^\mathcal{I}(x) = \sup_{y \in \Delta^\mathcal{I}} r^\mathcal{I}(x, y) \otimes C^\mathcal{I}(y)$
Fuzzy Description Logics

Fuzzy interpretations $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$:

- concept names: $\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \rightarrow [0, 1]$
- role names: $\text{likes}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \rightarrow [0, 1]$
- individual names: $\text{laura}^\mathcal{I} \in \Delta^\mathcal{I}$

\mathcal{EL}:

- conjunction $(C \cap D)^{\mathcal{I}}(x) = C^\mathcal{I}(x) \otimes D^\mathcal{I}(x)$
- top $\top^{\mathcal{I}}(x) = 1$
- existential restriction $(\exists r.C)^{\mathcal{I}}(x) = \sup_{y \in \Delta^\mathcal{I}} r^{\mathcal{I}}(x, y) \otimes C^\mathcal{I}(y)$

More constructors:

- $\mathcal{AL} = \mathcal{EL} + \forall r.C$
- C: involutive negation $\neg C$
- \mathcal{N}: residual negation $\Box C$
- \mathcal{I}: implication $C \rightarrow D$, bottom \bot
Fuzzy Description Logics

Fuzzy interpretations $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$:

- concept names: $\text{Happy}^\mathcal{I} : \Delta^\mathcal{I} \to [0, 1]
- role names: $\text{likes}^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \to [0, 1]
- individual names: $\text{laura}^\mathcal{I} \in \Delta^\mathcal{I}$

\mathcal{EL}:

- conjunction $(C \sqcap D)^\mathcal{I}(x) = C^\mathcal{I}(x) \otimes D^\mathcal{I}(x)$
- top $\top^\mathcal{I}(x) = 1$
- existential restriction $(\exists r.C)^\mathcal{I}(x) = \sup_{y \in \Delta^\mathcal{I}} r^\mathcal{I}(x, y) \otimes C^\mathcal{I}(y)$

More constructors:

- $\mathcal{AL} = \mathcal{EL} + \forall r.C$
- C: involutive negation $\neg C$
- N: residual negation $\Box C$
- I: implication $C \rightarrow D$, bottom \bot

$\otimes\text{-\text{IALC}}$ $\Pi\text{-\text{NELC}}$ L-ELC
Fuzzy Reasoning

Ontology \mathcal{O}: finite set of axioms:

- concept assertion $\langle a : C \triangleright p \rangle$: $C^\mathcal{I}(a^\mathcal{I}) \triangleright p$
- role assertion $\langle (a, b) : r \triangleright p \rangle$: $r^\mathcal{I}(a^\mathcal{I}, b^\mathcal{I}) \triangleright p$
- GCI $\langle C \sqsubseteq D \geq p \rangle$: $C^\mathcal{I}(x) \Rightarrow D^\mathcal{I}(x) \geq p$ for all $x \in \Delta^\mathcal{I}$
Fuzzy Reasoning

Ontology \mathcal{O}: finite set of axioms:
- concept assertion $\langle a : C \triangleright p \rangle$: $C^\mathcal{I}(a^\mathcal{I}) \triangleright p$
- role assertion $\langle (a, b) : r \triangleright p \rangle$: $r^\mathcal{I}(a^\mathcal{I}, b^\mathcal{I}) \triangleright p$
- GCI $\langle C \sqsubseteq D \geq p \rangle$: $C^\mathcal{I}(x) \Rightarrow D^\mathcal{I}(x) \geq p$ for all $x \in \Delta^\mathcal{I}$
 \[p \otimes C^\mathcal{I}(x) \leq D^\mathcal{I}(x) \]
Fuzzy Reasoning

Ontology \(\mathcal{O} \): finite set of axioms:

- concept assertion \(\langle a: C \triangleright p \rangle: C^\mathcal{I}(a^\mathcal{I}) \triangleright p \)
- role assertion \(\langle (a, b): r \triangleright p \rangle: r^\mathcal{I}(a^\mathcal{I}, b^\mathcal{I}) \triangleright p \)
- GCI \(\langle C \sqsubseteq D \geq p \rangle: C^\mathcal{I}(x) \Rightarrow D^\mathcal{I}(x) \geq p \) for all \(x \in \Delta^\mathcal{I} \)

\[
p \otimes C^\mathcal{I}(x) \leq D^\mathcal{I}(x)
\]

crisp if \(p = 1 \)
Fuzzy Reasoning

Ontology \mathcal{O}: finite set of axioms:

- concept assertion $\langle a : C \triangleright p \rangle$: $C^I(a^I) \triangleright p$
- role assertion $\langle (a, b) : r \triangleright p \rangle$: $r^I(a^I, b^I) \triangleright p$
- GCI $\langle C \sqsubseteq D \triangleright p \rangle$: $C^I(x) \Rightarrow D^I(x) \geq p$ for all $x \in \Delta^I$

$$p \otimes C^I(x) \leq D^I(x)$$

Witnessed interpretations:

$$(\exists r. C)^I(x) = \max_{y \in \Delta^I} r^I(x, y) \otimes C^I(y).$$

(Hájek 2005)
Ontology \mathcal{O}: finite set of axioms:

- concept assertion $\langle a : C \triangleright p \rangle$: $C^\mathcal{I}(a^\mathcal{I}) \triangleright p$
- role assertion $\langle (a, b) : r \triangleright p \rangle$: $r^\mathcal{I}(a^\mathcal{I}, b^\mathcal{I}) \triangleright p$
- GCI $\langle C \sqsubseteq D \geq p \rangle$: $C^\mathcal{I}(x) \Rightarrow D^\mathcal{I}(x) \geq p$ for all $x \in \Delta^\mathcal{I}$

\[p \otimes C^\mathcal{I}(x) \leq D^\mathcal{I}(x) \]

Witnessed interpretations:

\[(\exists r. C)^\mathcal{I}(x) = \max_{y \in \Delta^\mathcal{I}} r^\mathcal{I}(x, y) \otimes C^\mathcal{I}(y). \]

Reasoning tasks:

- ontology consistency:
 Does \mathcal{O} have a (witnessed) model?
- concept satisfiability:
 Is there a (witnessed) model \mathcal{I} of \mathcal{O} with $C^\mathcal{I}(x) \geq p$ for some $x \in \Delta^\mathcal{I}$?
Fuzzy Reasoning

Ontology \mathcal{O}: finite set of axioms:

- concept assertion $\langle a : C \triangleright p \rangle: C^\mathcal{I}(a^\mathcal{I}) \triangleright p$
- role assertion $\langle (a, b) : r \triangleright p \rangle: r^\mathcal{I}(a^\mathcal{I}, b^\mathcal{I}) \triangleright p$
- GCI $\langle C \sqsubseteq D \geq p \rangle$: $C^\mathcal{I}(x) \Rightarrow D^\mathcal{I}(x) \geq p$ for all $x \in \Delta^\mathcal{I}$

\[
p \otimes C^\mathcal{I}(x) \leq D^\mathcal{I}(x)
\]

Witnessed interpretations: (Hájek 2005)

\[
(\exists r.C)^\mathcal{I}(x) = \max_{y \in \Delta^\mathcal{I}} r^\mathcal{I}(x, y) \otimes C^\mathcal{I}(y).
\]

Reasoning tasks:

- ontology consistency:
 Does \mathcal{O} have a (witnessed) model?
- concept satisfiability:
 Is there a (witnessed) model \mathcal{I} of \mathcal{O} with $C^\mathcal{I}(x) \geq p$ for some $x \in \Delta^\mathcal{I}$?

Applications: (Ciaramella et al. 2010; Meghini, Sebastiani, and Straccia 2001)

- recommender systems with background knowledge
- information retrieval, query relaxation

Crisp if $p = 1$
Tableau Algorithms

Tableau algorithm for \otimes-\mathcal{ALC} without GCIs: (Bobillo and Straccia 2009)

$\langle a : C \geq p \rangle \leadsto \langle a : C = v_a : C \rangle, v_a : C \geq p$

$\langle (a, b) : r \geq p \rangle \leadsto \langle (a, b) : r = v_{(a,b)} : r \rangle, v_{(a,b)} : r \geq p$
Tableau Algorithms

Tableau algorithm for $\otimes\mathcal{ALC}$ without GCIs: (Bobillo and Straccia 2009)

$\langle a:C \geq p \rangle \leadsto \langle a:C = v_{a:C}, v_{a:C} \geq p \rangle$

$\langle (a,b):r \geq p \rangle \leadsto \langle (a,b):r = v_{(a,b):r}, v_{(a,b):r} \geq p \rangle$

$\langle x:C \cap D = v \rangle \leadsto \langle x:C = v_{x:C}, x:D = v_{x:D}, v = v_{x:C} \otimes v_{x:D} \rangle$

\ldots

$\text{Deterministic exponential time}$

O is consistent iff the constraints have a solution (NP-hard)

$\mathcal{NEXP} \subseteq \mathcal{XPTIME}$ for $\mathcal{Ł\text{-}ALC}$, $\mathcal{E\text{-}XP} \subseteq \mathcal{PACE}$ for $\mathcal{Π\text{-}ALC}$

$\text{Possible for any finite ordinal sum}$
Tableau Algorithms

Tableau algorithm for \otimes-\mathcal{ALC} without GCIs: (Bobillo and Straccia 2009)

$$\langle a: C \geq p \rangle \leadsto \langle a: C = v_{a:C} \rangle, \; v_{a:C} \geq p$$

$$\langle (a, b): r \geq p \rangle \leadsto \langle (a, b): r = v_{(a,b):r} \rangle, \; v_{(a,b):r} \geq p$$

$$\langle x: C \cap D = v \rangle \leadsto \langle x: C = v_{x:C} \rangle, \langle x: D = v_{x:D} \rangle, \; v = v_{x:C} \otimes v_{x:D}$$

$$\ldots$$

$$\langle x: \exists r. C = v \rangle \leadsto \langle (x, y): r = v_{(x,y):r} \rangle, \langle y: C = v_{y:C} \rangle, \; v = v_{(x,y):r} \otimes v_{y:C}$$

$$\langle x: \exists r. C = v \rangle, \langle (x, y): r = v' \rangle \leadsto \langle y: C = v_{y:C} \rangle, \; v \geq v' \otimes v_{y:C}$$

$$\ldots$$
Tableau Algorithms

Tableau algorithm for \otimes-\mathcal{ALC} without GCIs: (Bobillo and Straccia 2009)

\[
\langle a: C \geq p \rangle \leadsto \langle a: C = v_{a: C} \rangle, \ v_{a: C} \geq p \\
\langle (a, b): r \geq p \rangle \leadsto \langle (a, b): r = v_{(a, b): r} \rangle, \ v_{(a, b): r} \geq p \\
\langle x: C \cap D = v \rangle \leadsto \langle x: C = v_{x: C} \rangle, \langle x: D = v_{x: D} \rangle, \ v = v_{x: C} \otimes v_{x: D} \\
\ldots
\]

\[
\langle x: \exists r.C = v \rangle \leadsto \langle (x, y): r = v_{(x, y): r} \rangle, \langle y: C = v_{y: C} \rangle, \ v = v_{(x, y): r} \otimes v_{y: C} \\
\langle x: \exists r.C = v \rangle, \langle (x, y): r = v' \rangle \leadsto \langle y: C = v_{y: C} \rangle, \ v \geq v' \otimes v_{y: C} \\
\ldots
\]

- deterministic exponential time
- \mathcal{O} is consistent iff the constraints have a solution (NP-hard)
Tableau Algorithms

Tableau algorithm for $⊗$-\mathcal{ALC} without GCIs: (Bobillo and Straccia 2009)

\[\langle a : C \geq p \rangle \leadsto \langle a : C = v_a : C \rangle, \ v_a : C \geq p \]
\[\langle (a, b) : r \geq p \rangle \leadsto \langle (a, b) : r = v_{(a, b)} : r \rangle, \ v_{(a, b)} : r \geq p \]
\[\langle x : C \sqcap D = v \rangle \leadsto \langle x : C = v_x : C \rangle, \langle x : D = v_x : D \rangle, \ v = v_x : C \otimes v_x : D \]
\[\ldots \]
\[\langle x : \exists r.C = v \rangle \leadsto \langle (x, y) : r = v_{(x, y)} : r \rangle, \langle y : C = v_y : C \rangle, \ v = v_{(x, y)} : r \otimes v_y : C \]
\[\langle x : \exists r.C = v \rangle, \langle (x, y) : r = v' \rangle \leadsto \langle y : C = v_y : C \rangle, \ v \geq v' \otimes v_y : C \]
\[\ldots \]

- deterministic exponential time
- \mathcal{O} is consistent iff the constraints have a solution (NP-hard)
- NEXPTIME for \mathcal{L}-\mathcal{ALC}, EXPSPACE for Π-\mathcal{ALC}
- possible for any finite ordinal sum
Fuzzy GCIs

- GCIs like $\langle \top \sqsubseteq \exists r. \top \geq 1 \rangle$ can lead to cycles in the tableau
- blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)
 x is blocked by y if their assertions and constraints are isomorphic
Fuzzy GCIs

- GCIs like $\langle T \subseteq \exists r.T \geq 1 \rangle$ can lead to cycles in the tableau.
- Blocking condition for Π-ALC with GCIs: x is blocked by y if their assertions and constraints are isomorphic.
- The algorithm is not sound.

(Bobillo and Straccia 2007)

(Cerami and Straccia 2011)

(Baader and Peñaloza 2011a; Bobillo, Bou, and Straccia 2011)
Fuzzy GCIs

- GCIs like \(\langle \top \sqsubseteq \exists r. \top \geq 1 \rangle \) can lead to cycles in the tableau
- blocking condition for \(\Pi\text{-}ALC \) with GCIs: (Bobillo and Straccia 2007)
 \(x \) is blocked by \(y \) if their assertions and constraints are isomorphic
- the algorithm is not sound
 (Baader and Peñaloza 2011a; Bobillo, Bou, and Straccia 2011)

\[
\langle a : A \geq 0.5 \rangle, \langle A \sqsubseteq \exists r. A \geq 1 \rangle, \langle \top \sqsubseteq \neg \exists r. \top \geq 0.1 \rangle
\]
Fuzzy GCIs

- GCIs like $\langle \top \sqsubseteq \exists r. \top \geq 1 \rangle$ can lead to cycles in the tableau
- blocking condition for Π-ALC with GCIs: \cite{Bobillo2007} x is blocked by y if their assertions and constraints are isomorphic
- the algorithm is not sound \cite{Baader2011a,Bobillo2011a,Bobillo2011b}

\[
\langle a : A \geq 0.5 \rangle, \langle A \sqsubseteq \exists r. A \geq 1 \rangle, \langle \top \sqsubseteq \neg \exists r. \top \geq 0.1 \rangle
\]

\[
0.5 \leq v_{a : A}, \quad v_{a : A} \leq v_{x_1 : A} \cdot v_{(a,x_1) : r}, \quad v_{(a,x_1) : r} \leq 0.9,
\]
Fuzzy GCIs

- GCIs like $\langle \top \subseteq \exists r. \top \geq 1 \rangle$ can lead to cycles in the tableau.
- Blocking condition for Π-ALC with GCIs: x is blocked by y if their assertions and constraints are isomorphic.
- The algorithm is not sound (Baader and Peñaloza 2011a; Bobillo, Bou, and Straccia 2011).

$$
\langle a:A \geq 0.5 \rangle, \langle A \subseteq \exists r.A \geq 1 \rangle, \langle \top \subseteq \neg \exists r. \top \geq 0.1 \rangle
$$

$$
0.5 \leq v_{a:A}, \quad v_{a:A} \leq v_{x_1:A} \cdot v_{(a,x_1):r}, \quad v_{(a,x_1):r} \leq 0.9,
$$

$$
v_{x_1:A} \leq v_{x_2:A} \cdot v_{(x_1,x_2):r}, \quad v_{(x_1,x_2):r} \leq 0.9,
$$
Fuzzy GCIs

• GCIs like $\langle \top \sqsubseteq \exists r. \top \geq 1 \rangle$ can lead to cycles in the tableau

• blocking condition for $\Pi\text{-ALC}$ with GCIs: x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound

(Bobillo and Straccia 2007)

$0.5 \leq v_{a:A}, \ v_{a:A} \leq v_{x_1:A} \cdot v_{(a,x_1):r}, \ v_{(a,x_1):r} \leq 0.9,$

$\ v_{x_1:A} \leq v_{x_2:A} \cdot v_{(x_1,x_2):r}, \ v_{(x_1,x_2):r} \leq 0.9,$

$\ v_{x_2:A} \leq v_{x_3:A} \cdot v_{(x_2,x_3):r}, \ v_{(x_2,x_3):r} \leq 0.9$
Fuzzy GCIs

- GCIs like $\langle \top \sqsubseteq \exists r. \top \geq 1 \rangle$ can lead to cycles in the tableau
- blocking condition for Π-ALC with GCIs:
 - x is blocked by y if their assertions and constraints are isomorphic
- the algorithm is not sound

(Bobillo and Straccia 2007)

x is blocked by y if their assertions and constraints are isomorphic

(Baader and Peñaloza 2011a; Bobillo, Bou, and Straccia 2011)

$$\langle a : A \geq 0.5 \rangle, \langle A \sqsubseteq \exists r. A \geq 1 \rangle, \langle \top \sqsubseteq \neg \exists r. \top \geq 0.1 \rangle$$

$$0.5 \leq v_{a:A}, \quad v_{a:A} \leq v_{x_1:A} \cdot v_{(a,x_1):r}, \quad v_{(a,x_1):r} \leq 0.9,$$

$$v_{x_1:A} \leq v_{x_2:A} \cdot v_{(x_1,x_2):r}, \quad v_{(x_1,x_2):r} \leq 0.9,$$

$$v_{x_2:A} \leq v_{x_3:A} \cdot v_{(x_2,x_3):r}, \quad v_{(x_2,x_3):r} \leq 0.9,$$

$$0.5 \cdot \left(\frac{10}{9} \right)^i \leq v_{x_i:A} \xrightarrow{\sim} v_{x_7:A} > 1 !$$
Fuzzy GCIs

- GCIs like $\langle T \sqsubseteq \exists r.T \geq 1 \rangle$ can lead to cycles in the tableau
- blocking condition for Π-\textit{ALC} with GCIs: x is blocked by y if their assertions and constraints are isomorphic
- the algorithm is not sound

$$\langle a:A \geq 0.5 \rangle, \langle A \sqsubseteq \exists r.A \geq 1 \rangle, \langle T \sqsubseteq \neg \exists r.T \geq 0.1 \rangle$$

$$0.5 \leq v_{a:A}, v_a:A \leq v_{x_1:A} \cdot v_{(a,x_1):r}, v_{(a,x_1):r} \leq 0.9,$$

$$v_{x_1:A} \leq v_{x_2:A} \cdot v_{(x_1,x_2):r}, v_{(x_1,x_2):r} \leq 0.9,$$

$$v_{x_2:A} \leq v_{x_3:A} \cdot v_{(x_2,x_3):r}, v_{(x_2,x_3):r} \leq 0.9$$

$$0.5 \cdot \left(\frac{10}{9} \right)^i \leq v_{x_i:A} \implies v_{x_7:A} > 1 !$$

- undecidability results for variants of Π-\textit{ALC} and L-\textit{ALC} with GCIs

(Baader and Peñaloza 2011a, b; Cerami and Straccia 2011)
(Un)Decidable Fuzzy DLs with GCIs

Consistency is undecidable (with crisp GCIs) in \otimes-N\mathcal{E}L with crisp assertions if \otimes starts with Ł

• \otimes-E\mathcal{L}C with \geq-assertions and \otimes-I\mathcal{A}L with $=$-assertions for all continuous t-norms except the Gödel t-norm

Consistency is decidable (E\mathcal{X}PTIME-complete) in \otimes-I\mathcal{A}L with \geq-assertions if \otimes does not start with Ł (Borgwardt, Distel, and Peñaloza 2012)

• residual negation is crisp: $\neg x = \begin{cases} 0 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \end{cases}$

• restrict to crisp models of crisp ontologies

undecidable fuzzy DLs

constructors

N\mathcal{E}L I\mathcal{A}L E\mathcal{L}C $\begin{bmatrix} \otimes, \top, \exists, \top \end{bmatrix}$ $\begin{bmatrix} \otimes, \top, \top, \top, \top \end{bmatrix}$ $\begin{bmatrix} \otimes, \top, \top, \top, \neg \end{bmatrix}$ assertions crisp starts with Ł starts with Ł starts with Ł Π Ł \geq Ł $=$ Ł not G not G not G
(Un)Decidable Fuzzy DLs with GCIs

Consistency is undecidable (with crisp GCIs) in ... (Borgwardt and Peñaloza 2012)

- ... \otimes-$\mathcal{N}EL$ with crisp assertions if \otimes starts with \bot
- ... \otimes-\mathcal{ELC} with \geq-assertions and \otimes-\mathcal{IAL} with $=$-assertions for all continuous t-norms except the Gödel t-norm
(Un)Decidable Fuzzy DLs with GCIs

Consistency is undecidable (with crisp GCIs) in ... (Borgwardt and Peñaloza 2012)
 • ... \otimes-\mathcal{NEL} with crisp assertions if \otimes starts with \mathbb{L}
 • ... \otimes-\mathcal{ELC} with \geq-assertions and \otimes-\mathcal{IAL} with $=$-assertions for all continuous t-norms except the Gödel t-norm

Consistency is decidable (EXPTIME-complete) in \otimes-\mathcal{IAL} with \geq-assertions if \otimes does not start with \mathbb{L} (Borgwardt, Distel, and Peñaloza 2012)
(Un)Decidable Fuzzy DLs with GCIs

Consistency is undecidable (with crisp GCIs) in ... (Borgwardt and Peñaloza 2012)

• ... \(\otimes \mathcal{N}EL \) with crisp assertions if \(\otimes \) starts with \(
\)
• ... \(\otimes \mathcal{E}LC \) with \(\geq \)-assertions and \(\otimes \mathcal{I}AL \) with \(= \)-assertions for all continuous t-norms except the Gödel t-norm

Consistency is decidable (ExPTIME-complete) in \(\otimes \mathcal{I}AL \) with \(\geq \)-assertions if \(\otimes \) does not start with \(
\)

• residual negation is crisp: \(\ominus x = \begin{cases} 0 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \end{cases} \)
• restrict to crisp models of crisp ontologies
(Un)Decidable Fuzzy DLs with GCIs

Consistency is undecidable (with crisp GCIs) in ...

- ... \otimes-$\mathcal{N}EL$ with crisp assertions if \otimes starts with \mathcal{L}
- ... \otimes-$\mathcal{E}LC$ with \geq-assertions and \otimes-$\mathcal{I}AL$ with $=$-assertions for all continuous t-norms except the Gödel t-norm

Consistency is decidable (EXPTIME-complete) in \otimes-$\mathcal{I}AL$ with \geq-assertions if \otimes does not start with \mathcal{L}

- residual negation is crisp: $\ominus x = \begin{cases} 0 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \end{cases}$
- restrict to crisp models of crisp ontologies
Complete Residuated De Morgan Lattices

More general:
- complete distributive lattice \((L, \lor, \land, 0, 1)\)

\[
\begin{align*}
\text{Happy} & : \Delta^I \to L \\
\text{likes} & : \Delta^I \times \Delta^I \to L \\
(\exists r.C)^I(x) & = \bigvee_{y \in \Delta^I} r^I(x, y) \land C^I(y)
\end{align*}
\]

\[\langle (laura, elisabeth) : \text{likes} = a \rangle, \langle (laura, stefan) : \text{likes} = b \rangle\]
Complete Residuated De Morgan Lattices

More general:

- complete distributive lattice \((L, \vee, \wedge, 0, 1)\)
- (generalized) t-norm \(\otimes: L \times L \rightarrow L:\)
 associative, commutative, monotone, unit 1, ("continuous")
Complete Residuated De Morgan Lattices

More general:

- complete distributive lattice \((L, \lor, \land, 0, 1)\)
- (generalized) t-norm \(\otimes: L \times L \to L\):
 associative, commutative, monotone, unit 1, ("continuous")
- residuum \(\Rightarrow: [0, 1] \times [0, 1] \to [0, 1]: x \otimes y \leq z \iff y \leq x \Rightarrow z\)
- residual negation \(\ominus x = x \Rightarrow 0\)
Complete Residuated De Morgan Lattices

More general:

- complete distributive lattice \((L, \vee, \wedge, 0, 1)\)
- (generalized) t-norm \(\otimes: L \times L \rightarrow L\):
 associative, commutative, monotone, unit 1, ("continuous")
- residuum \(\Rightarrow: [0, 1] \times [0, 1] \rightarrow [0, 1]: x \otimes y \leq z \text{ iff } y \leq x \Rightarrow z\)
- residual negation \(\ominus x = x \Rightarrow 0\)
- involutive De Morgan negation \(\sim: L \rightarrow L\)
- t-conorm \(x \oplus y = \sim(\sim x \otimes \sim y)\)

\[\begin{array}{c}
\sim a \\
\sim b \\
\sim c \\
1 \\
\end{array}
\begin{array}{c}
a \\
b \\
c \\
0 \\
\end{array}\]
Complete Residuated De Morgan Lattices

More general:

- **complete distributive lattice** \((L, \lor, \land, 0, 1)\)
- (generalized) **t-norm** \(\otimes: L \times L \to L\):
 - associative, commutative, monotone, unit 1, (“continuous”)
- **residuum** \(\Rightarrow: [0, 1] \times [0, 1] \to [0, 1]\): \(x \otimes y \leq z\) iff \(y \leq x \Rightarrow z\)
- **residual negation** \(\ominus: L \to L\):
 - \(\ominus x = x \Rightarrow 0\)
- **involutive De Morgan negation** \(\sim: L \to L\)
- **t-conorm** \(x \oplus y = \sim(\sim x \otimes \sim y)\)

L-\(\mathcal{E}\mathcal{L}\):

- **Happy** \(\mathcal{I}: \Delta^\mathcal{I} \to L\)
- **likes** \(\mathcal{I}: \Delta^\mathcal{I} \times \Delta^\mathcal{I} \to L\)
- \((\exists r. C)^\mathcal{I}(x) = \bigvee_{y \in \Delta^\mathcal{I}} r^\mathcal{I}(x, y) \otimes C^\mathcal{I}(y)\)
Complete Residuated De Morgan Lattices

More general:

- complete distributive lattice \((L, \lor, \land, 0, 1)\)
- (generalized) t-norm \(\otimes: L \times L \to L\): associative, commutative, monotone, unit 1, ("continuous")
- residuum \(\Rightarrow: [0, 1] \times [0, 1] \to [0, 1]: x \otimes y \leq z \iff y \leq x \Rightarrow z\)
- residual negation \(\ominus x = x \Rightarrow 0\)
- involutive De Morgan negation \(\sim: L \to L\)
- t-conorm \(x \oplus y = \sim(\sim x \otimes \sim y)\)

\(L\)-\(\mathcal{EL}\):

- \(\text{Happy}^\mathcal{I}: \Delta^\mathcal{I} \to L\)
- \(\text{likes}^\mathcal{I}: \Delta^\mathcal{I} \times \Delta^\mathcal{I} \to L\)
- \((\exists r.C)^\mathcal{I}(x) = \bigvee_{y \in \Delta^\mathcal{I}} r^\mathcal{I}(x, y) \otimes C^\mathcal{I}(y)\)

\(<(laura, elisabeth): \text{likes} = a>, <(laura, stefan): \text{likes} = b>\)
Reduction to classical reasoning for L-\mathcal{ALC} with GCIs over finite total orders L:

- introduce cut-concepts and -roles A_p, r_p for every $p \in L$
- $A_p \doteq$ all individuals x with $A^I(x) \geq p$

(Bohillo, Delgado, et al. 2012; Straccia 2006)
Reasoning over Finite Lattices

Reduction to classical reasoning for L-ALC with GCIs over finite total orders L:
(Bobillo, Delgado, et al. 2012; Straccia 2006)

- introduce cut-concepts and -roles A_p, r_p for every $p \in L$
- $A_p \equiv$ all individuals x with $A^I(x) \geq p$
- $A_{0.5} \sqsubseteq A_{0.25}, r_{0.5} \sqsubseteq r_{0.25}, \ldots$ — needs role hierarchy (\mathcal{H})!
Reduction to classical reasoning for L-ALC with GCIs over finite total orders L:
(Bobillo, Delgado, et al. 2012; Straccia 2006)

- introduce cut-concepts and -roles A_p, r_p for every $p \in L$
- $A_p \triangleq \text{all individuals } x \text{ with } A^I(x) \geq p$
- $A_{0.5} \sqsubseteq A_{0.25}$, $r_{0.5} \sqsubseteq r_{0.25}$, ... — needs role hierarchy (\mathcal{H})!
- $\langle a : C \cap D \geq p \rangle \rightsquigarrow a : \bigsqcup_{q \otimes q' = p} C_q \cap D_{q'}$
- $\langle C \sqsubseteq D \geq p \rangle \rightsquigarrow \{ C_q \sqsubseteq D_{q'} \mid q \Rightarrow q' \geq p \}$
Reduction to classical reasoning for $L\!-\!\mathcal{ALC}$ with GCIs over finite total orders L:
(Bobillo, Delgado, et al. 2012; Straccia 2006)

- introduce cut-concepts and -roles A_p, r_p for every $p \in L$
- $A_p \equiv$ all individuals x with $A^\mathcal{I}(x) \geq p$
- $A_{0.5} \sqsubseteq A_{0.25}, r_{0.5} \sqsubseteq r_{0.25}, \ldots$ — needs role hierarchy (\mathcal{H})!
- $\langle a: C \cap D \geq p \rangle \leadsto a: \bigcup_{q \otimes q' = p} C_q \cap D_{q'}$
- $\langle C \sqsubseteq D \geq p \rangle \leadsto \{C_q \sqsubseteq D_{q'} \mid q \Rightarrow q' \geq p\}$
- exponential in the size of $\mathcal{O} \leadsto 2\text{-EXP\textsc{TIME}}$
Reasoning over Finite Lattices

Reduction to classical reasoning for L-\textsc{ALC} with GCIs over finite total orders L:
(Bobillo, Delgado, et al. 2012; Straccia 2006)

- introduce cut-concepts and -roles A_p, r_p for every $p \in L$
- $A_p \equiv$ all individuals x with $A^I(x) \geq p$
- $A_{0.5} \sqsubseteq A_{0.25}, r_{0.5} \sqsubseteq r_{0.25}, \ldots$ — needs role hierarchy (\mathcal{H})!
- $\langle a : C \sqcap D \geq p \rangle \rightsquigarrow a : \bigcup_{q \sqsubseteq q' = p} C_q \sqcap D_{q'}$
- $\langle C \sqsubseteq D \geq p \rangle \rightsquigarrow \{ C_q \sqsubseteq D_{q'} \mid q \Rightarrow q' \geq p \}$
- exponential in the size of $\mathcal{O} \rightsquigarrow \text{2-EXP\!TIME}$

Satisfiability and consistency are \textsc{EXPTIME}-complete in L-\textsc{IALC} over finite L:
(Borgwardt and Peñaloza 2013a,c)

- combination of automata construction and tableaux rules
- \textsc{PSPACE}-complete without GCIs
Automata-Based Approach for Satisfiability

- adaptation of classical construction (Baader, Hladik, and Peñaloza 2008)
- recognize tree-shaped models by looping tree automaton of exponential size
Automata-Based Approach for Satisfiability

- adaptation of classical construction (Baader, Hladik, and Peñaloza 2008)
- recognize tree-shaped models by looping tree automaton of exponential size

\[
\exists \text{likes.} \exists \text{has-disease.} \top \mapsto a, \exists \text{has-disease.} \top \mapsto 0, \ldots
\]
Automata-Based Approach for Satisfiability

- adaptation of classical construction (Baader, Hladik, and Peñaloza 2008)
- recognize tree-shaped models by looping tree automaton of exponential size

∃likes.∃has-disease.⊤ ↦ a, ∃has-disease.⊤ ↦ 0, ...
∃has-disease.⊤ ↦ ¬a, ρ ↦ ¬b, ...
ρ ↦ 0, ...

...
Automata-Based Approach for Satisfiability

- adaptation of classical construction (Baader, Hladik, and Peñaloza 2008)
- recognize tree-shaped models by looping tree automaton of exponential size
- satisfiability PSPACE-complete without GCIs
- not suited for consistency

∃\text{likes}.∃\text{has-disease}.\top \rightarrow a, ∃\text{has-disease}.\top \rightarrow 0, \ldots

∃\text{has-disease}.\top \rightarrow \sim a, ρ \rightarrow \sim b, \ldots

ρ \rightarrow 0, \ldots
Tableau Algorithm for Consistency

- try all pre-completions of the assertions

(Hollunder 1996)

\[
\langle x: \exists \text{likes}. \exists \text{has-disease}. \top \geq a \rangle, \langle (x, y): \text{likes} = b \rangle
\]

\[
\exists \text{likes}. \exists \text{has-disease}. \top = a \\
\exists \text{has-disease}. \top = a
\]
Tableau Algorithm for Consistency

- try all pre-completions of the assertions
- test satisfiability for each individual name

(Hollunder 1996)

\[
\langle x : \exists \text{likes}. \exists \text{has-disease}. T \geq a \rangle, \langle (x, y) : \text{likes} = b \rangle
\]
Tableau Algorithm for Consistency

- try all pre-completions of the assertions
- test satisfiability for each individual name
- consistency PSPACE-complete without GCIs

(Hollunder 1996)

\[\langle x : \exists \text{likes}. \exists \text{has-disease}. T \geq a \rangle, \langle (x, y) : \text{likes} = b \rangle \]
Summary

- fuzzy DLs with GCIs over \([0, 1]\) often undecidable or trivial
- tight complexity results for fuzzy DLs over finite lattices
Summary

- fuzzy DLs with GCIs over $[0, 1]$ often undecidable or trivial
- tight complexity results for fuzzy DLs over finite lattices

Open questions:
- for some cases decidability still unknown
- in \mathcal{EL}, consistency is trivial, but what about subsumption? (Borgwardt and Peñaloza 2013b)
- tight complexity results without GCIs?
Summary

- fuzzy DLs with GCIs over $[0, 1]$ often undecidable or trivial
- tight complexity results for fuzzy DLs over finite lattices

Open questions:
- for some cases decidability still unknown
- in \mathcal{EL}, consistency is trivial, but what about subsumption?
 (Borgwardt and Peñaloza 2013b)
- tight complexity results without GCIs?

Thank you!
References I

