RECENT ADVANCES IN UNIFICATION FOR THE \mathcal{EL} FAMILY

Franz Baader Stefan Borgwardt Barbara Morawska

Manchester, July 1, 2012
The Description Logics \mathcal{EL} and \mathcal{ELH}_{R+}

Syntax

- concept name
 - $A \in N_C$
- role name
 - $r \in N_R$
The Description Logics \mathcal{EL} and \mathcal{ELH}_{R^+}

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Interpretation $\mathcal{I} = (\cdot^\mathcal{I}, \Delta^\mathcal{I})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept name</td>
<td>$A \in N_C$</td>
</tr>
<tr>
<td>role name</td>
<td>$r \in N_R$</td>
</tr>
<tr>
<td>conjunction</td>
<td>$\mathcal{C} \sqcap \mathcal{D} \subseteq \Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>existential restriction</td>
<td>$\exists r.\mathcal{C} { x</td>
</tr>
<tr>
<td>top concept</td>
<td>$\top \subseteq \Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>axioms</td>
<td>$C \sqsubseteq \mathcal{D}$</td>
</tr>
<tr>
<td>transitivity axiom</td>
<td>$r \circ r \sqsubseteq r^\mathcal{I} \times \Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>role hierarchy axiom</td>
<td>$r \sqsubseteq s$ $r^\mathcal{I} \subseteq s^\mathcal{I}$</td>
</tr>
</tbody>
</table>

Manchester, July 1, 2012 Unification for the \mathcal{EL} Family
The Description Logics \mathcal{EL} and \mathcal{ELH}_{R^+}

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Interpretation $\mathcal{I} = (\cdot^\mathcal{I}, \Delta^\mathcal{I})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept name</td>
<td>$A \in N_C$</td>
</tr>
<tr>
<td></td>
<td>$A^\mathcal{I} \subseteq \Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>role name</td>
<td>$r \in N_R$</td>
</tr>
<tr>
<td></td>
<td>$r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>conjunction</td>
<td>$C \sqcap D$</td>
</tr>
<tr>
<td></td>
<td>$C^\mathcal{I} \cap D^\mathcal{I}$</td>
</tr>
<tr>
<td>existential restriction</td>
<td>$\exists r.C$</td>
</tr>
<tr>
<td></td>
<td>${ x \mid \exists y : (x, y) \in r^\mathcal{I} \land y \in C^\mathcal{I} }$</td>
</tr>
<tr>
<td>top concept</td>
<td>\top</td>
</tr>
<tr>
<td></td>
<td>$\Delta^\mathcal{I}$</td>
</tr>
</tbody>
</table>
The Description Logics \mathcal{EL} and \mathcal{ELH}_{R+}

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Interpretation $\mathcal{I} = (\cdot^\mathcal{I}, \Delta^\mathcal{I})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept name</td>
<td>$A \in N_C$</td>
</tr>
<tr>
<td>role name</td>
<td>$r \in N_R$</td>
</tr>
<tr>
<td>conjunction</td>
<td>$C \sqcap D$</td>
</tr>
<tr>
<td>existential restriction</td>
<td>$\exists r.C$</td>
</tr>
<tr>
<td>top concept</td>
<td>\top</td>
</tr>
<tr>
<td>axioms</td>
<td></td>
</tr>
<tr>
<td>GCI</td>
<td>$C \sqsubseteq D$</td>
</tr>
<tr>
<td>transitivity axiom</td>
<td>$r \circ r \sqsubseteq r$</td>
</tr>
<tr>
<td>role hierarchy axiom</td>
<td>$r \sqsubseteq s$</td>
</tr>
</tbody>
</table>

subsumption $C \sqsubseteq O$ $D^\mathcal{I} \subseteq D^\mathcal{I}$ (in all models of O)

equivalence $C \equiv O$ $D^\mathcal{I} = \Delta^\mathcal{I}$
The Description Logics \mathcal{EL} and \mathcal{ELH}_{R+}

Syntax

- **concept name** $A \in \mathbb{N}_C$
- **role name** $r \in \mathbb{N}_R$
- **conjunction** $C \sqcap D$
- **existential restriction** $\exists r.C$
- **top concept** \top

interpretation $\mathcal{I} = (\mathcal{I}, \Delta^\mathcal{I})$

- $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$
- $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$
- $C^\mathcal{I} \cap D^\mathcal{I}$
- $\{x \mid \exists y : (x, y) \in r^\mathcal{I} \land y \in C^\mathcal{I}\}$
- $\Delta^\mathcal{I}$

axioms

- **GCI** $C \sqsubseteq D$
- **transitivity axiom** $r \circ r \sqsubseteq r$
- **role hierarchy axiom** $r \sqsubseteq s$

consequences of an \mathcal{ELH}_{R+}-ontology \mathcal{O} (finite set of axioms)

- **subsumption** $C \sqsubseteq_{\mathcal{O}} D$
- **equivalence** $C \equiv_{\mathcal{O}} D$

$$C^\mathcal{I} \subseteq D^\mathcal{I} \quad \text{(in all models of } \mathcal{O})$$

Manchester, July 1, 2012 Unification for the \mathcal{EL} Family
The Description Logics \mathcal{EL} and \mathcal{ELH}_{R+}

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Interpretation $\mathcal{I} = (\cdot, \Delta^\mathcal{I})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept name</td>
<td>$A \in N_C$</td>
</tr>
<tr>
<td>role name</td>
<td>$r \in N_R$</td>
</tr>
<tr>
<td>conjunction</td>
<td>$C \sqcap D$</td>
</tr>
<tr>
<td>existential restriction</td>
<td>$\exists r. C$</td>
</tr>
<tr>
<td>top concept</td>
<td>\top</td>
</tr>
</tbody>
</table>

Axioms

- **GCI**
 - $C \sqsubseteq D$
 - $C^\mathcal{I} \subseteq D^\mathcal{I}$

- **Transitivity axiom**
 - $r \circ r \sqsubseteq r$
 - $r^\mathcal{I} \circ r^\mathcal{I} \subseteq r^\mathcal{I}$

- **Role hierarchy axiom**
 - $r \sqsubseteq s$
 - $r^\mathcal{I} \subseteq s^\mathcal{I}$

Consequences of an \mathcal{ELH}_{R+}-ontology \mathcal{O} (finite set of axioms)

- **Subsumption**
 - $C \sqsubseteq_\mathcal{O} D$
 - $C^\mathcal{I} \subseteq D^\mathcal{I}$

- **Equivalence**
 - $C \equiv_\mathcal{O} D$
 - $C^\mathcal{I} = D^\mathcal{I}$

Subsumption can be checked in polynomial time. [Baader, Brandt, Lutz IJCAI’05]

If \mathcal{O} contains only GCIs, we call it an \mathcal{EL}-ontology.

Manchester, July 1, 2012 Unification for the \mathcal{EL} Family 2
Unification in \mathcal{EL}

Some concept names are variables ($X \in N_v$), all others are constants ($A \in N_c$).

→ unification problem: $\Gamma = \{C_1 \equiv? D_1, \ldots, C_n \equiv? D_n\}$
 (w.r.t. a ground ontology \mathcal{O})

Manchester, July 1, 2012 Unification for the \mathcal{EL} Family
Some concept names are variables ($X \in N_v$), all others are constants ($A \in N_c$).

→ unification problem: $\Gamma = \{ C_1 \equiv? D_1, \ldots, C_n \equiv? D_n \}$(w.r.t. a ground ontology \mathcal{O})

A unifier σ (w.r.t. \mathcal{O}) substitutes variables with concept terms such that

$$\sigma(C_1) \equiv_{\mathcal{O}} \sigma(D_1), \ldots, \sigma(C_n) \equiv_{\mathcal{O}} \sigma(D_n).$$
Unification in \mathcal{EL}

Some concept names are variables ($X \in N_v$), all others are constants ($A \in N_c$).

\rightarrow unification problem: $\Gamma = \{C_1 \equiv? D_1, \ldots, C_n \equiv? D_n\}$
(w.r.t. a ground ontology \mathcal{O})

A unifier σ (w.r.t. \mathcal{O}) substitutes variables with concept terms such that

$$\sigma(C_1) \equiv_{\mathcal{O}} \sigma(D_1), \ldots, \sigma(C_n) \equiv_{\mathcal{O}} \sigma(D_n).$$

Unification modulo the theory of bounded semilattices with monotone operators:

- A → free constant
- X → variable
- \sqcap → binary associative, commutative, idempotent operator
- $\exists r.$ → unary monotone operator
- \top → constant; unit for \sqcap
- $C \sqsubseteq D$ → ground identity
- $r \circ r \sqsubseteq r$ → non-ground identity ($\exists r. \exists r. X \sqsubseteq \exists r. X$)
Why only ground ontologies?

\[C \equiv O D \text{ iff } t_C = \text{SLmO} \cup G \cup \mathcal{E} \cup E \cup H_{R^+} \quad t_D \]

Manchester, July 1, 2012 Unification for the \(\mathcal{E} \mathcal{L} \) Family
Why only ground ontologies?

\[C \equiv \emptyset \text{ iff } t_C = \text{SLmO } \cup \text{GO,EL } \cup \text{EO,HR}^{+} t_D \]

\text{o ground: } SLmO-unification with additional identities:

\[\sigma(s_i) = \text{SLmO } \cup \text{GO } \cup \text{EO } \sigma(t_i) \]
Why only ground ontologies?

\[C \equiv O \iff t_C = SLmO \cup G \cup E \cup \mathcal{H}_{R^+} t_D \]

\(O \) ground: \(SLmO \)-unification with additional identities:

\[\sigma(s_i) = SLmO \cup G \cup E \sigma(t_i) \]

\(O \) not ground: Rigid \(G \)-unification with background theory \(SLmO \) and additional identities:

\[\sigma(s_i) = SLmO \cup \sigma(G) \cup E \sigma(t_i) \]

Simultaneous rigid \(E \)-unification is undecidable. [Degtyarev, Voronkov 1996]
Results

Unification in \mathcal{EL} w.r.t. $\mathcal{O} = \emptyset$ is NP-complete.

- Matching is NP-hard. [Küsters ’01]
- Unification is in NP. [Baader, Morawska RTA’09/LMCS’10/LPAR’10]
- We can restrict the search to local unifiers of polynomial size.

Unification in $\mathcal{EL} - \top$ w.r.t. $\mathcal{O} = \emptyset$ is PACE-complete. [Baader, Binh, Borgwardt, Morawska CADE’11]

- Local unifiers may be of exponential size. [Baader, Binh, Borgwardt, Morawska UNIF’11]

Unification in $\mathcal{EL} w.r.t. \mathcal{ELH}^{R+ontologies}$ is NP-complete.

- Brute-force algorithm for \mathcal{EL}-ontologies [KR’12]
- Rule-based algorithm for \mathcal{EL}-ontologies [DL ‘12]
- SAT translation for $\mathcal{ELH}^{R+ontologies}$ [IJCAR’12]

- Again, local unifiers are of polynomial size.

Unification in \mathcal{ALCO} and \mathcal{SHI} is undecidable. [Wolter, Zakharyaschev 2008]
Results

Unification in \mathcal{EL} w.r.t. $\mathcal{O} = \emptyset$ is **NP-complete**.
- Matching is NP-hard. [Küsters ’01]
- Unification is in NP. [Baader, Morawska RTA’09/LMCS’10/LPAR’10]
- We can restrict the search to local unifiers of polynomial size.

Unification in \mathcal{EL}^{-T} w.r.t. $\mathcal{O} = \emptyset$ is **PSPACE-complete**.
[Baader, Binh, Borgwardt, Morawska CADE’11]
- Local unifiers may be of exponential size.
[Baader, Binh, Borgwardt, Morawska UNIF’11]
Results

Unification in $\mathcal{E}L$ w.r.t. $\mathcal{O} = \emptyset$ is NP-complete.
- Matching is NP-hard. [Küstes ’01]
- Unification is in NP. [Baader, Morawska RTA’09/LMCS’10/LPAR’10]
- We can restrict the search to local unifiers of polynomial size.

Unification in \mathcal{EL}^{-T} w.r.t. $\mathcal{O} = \emptyset$ is PSPACE-complete.
[Baader, Binh, Borgwardt, Morawska CADE’11]
- Local unifiers may be of exponential size.
[Baader, Binh, Borgwardt, Morawska UNIF’11]

Unification in \mathcal{EL} w.r.t. $\mathcal{ELS}H_{R^+}$-ontologies is NP-complete.
- Brute-force algorithm for \mathcal{EL}-ontologies [KR’12]
- Rule-based algorithm for \mathcal{EL}-ontologies [DL’12]
- SAT translation for $\mathcal{ELS}H_{R^+}$-ontologies [IJCAR’12]
- Again, local unifiers are of polynomial size.
Results

Unification in \mathcal{EL} w.r.t. $\mathcal{O} = \emptyset$ is **NP-complete**.
- Matching is NP-hard. [Küsters ’01]
- Unification is in NP. [Baader, Morawska RTA’09/LMCS’10/LPAR’10]
- We can restrict the search to local unifiers of polynomial size.

Unification in $\mathcal{EL}^{-\top}$ w.r.t. $\mathcal{O} = \emptyset$ is **PSPACE-complete**.
[Baader, Binh, Borgwardt, Morawska CADE’11]
- Local unifiers may be of exponential size.
[Baader, Binh, Borgwardt, Morawska UNIF’11]

Unification in \mathcal{EL} w.r.t. \mathcal{ELH}_{R+}-ontologies is **NP-complete**.
- Brute-force algorithm for \mathcal{EL}-ontologies [KR’12]
- Rule-based algorithm for \mathcal{EL}-ontologies [DL’12]
- SAT translation for \mathcal{ELH}_{R+}-ontologies [IJCAR’12]
- Again, local unifiers are of polynomial size.

Unification in \mathcal{ALCO} and \mathcal{SHI} is **undecidable**. [Wolter, Zakharyaschev 2008]
Characterization of Subsumption for Ground Concepts

for $\mathcal{O} = \emptyset$:

- $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq_{\emptyset} D_1 \sqcap \cdots \sqcap D_m$ iff for all D_j there is a C_i with $C_i \sqsubseteq_{\emptyset} D_j$.
Characterization of Subsumption for Ground Concepts

for $\mathcal{O} = \emptyset$:

- $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq_{\emptyset} D_1 \sqcap \cdots \sqcap D_m$ iff for all D_j there is a C_i with $C_i \sqsubseteq_{\emptyset} D_j$.
- $\exists r. C \sqsubseteq_{\emptyset} \exists s. D$ iff $r = s$ and $C \sqsubseteq_{\emptyset} D$.

...for $\mathcal{O} \neq \emptyset$:

- more cases for axioms in \mathcal{O}
- $A \sqsubseteq \mathcal{O} B$ with $A, B \in \mathcal{N}$ can hold, e.g., if $A \sqsubseteq \exists r. C$, $C \sqsubseteq D$, $\exists s. D \sqsubseteq B$, $r \sqsubseteq s$ are in \mathcal{O}.

- two different characterizations in [KR’12] (for EL) and [IJCAR’12] (for ELH+).
Characterization of Subsumption for Ground Concepts

for $\mathcal{O} = \emptyset$:

- $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq_\emptyset D_1 \sqcap \cdots \sqcap D_m$ iff for all D_j there is a C_i with $C_i \sqsubseteq_\emptyset D_j$.
- $\exists r. C \sqsubseteq_\emptyset \exists s. D$ iff $r = s$ and $C \sqsubseteq_\emptyset D$.
- $A \sqsubseteq_\emptyset B$ for $A, B \in N_C$ iff $A = B$.

Characterization of Subsumption for Ground Concepts

for $\mathcal{O} = \emptyset$:
- $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq \emptyset D_1 \sqcap \cdots \sqcap D_m$ iff for all D_j there is a C_i with $C_i \sqsubseteq \emptyset D_j$.
- $\exists r. C \sqsubseteq \emptyset \exists s. D$ iff $r = s$ and $C \sqsubseteq \emptyset D$.
- $A \sqsubseteq \emptyset B$ for $A, B \in \mathbb{N}_C$ iff $A = B$.
- $A \not\sqsubseteq \emptyset \exists r. B, \exists r. B \not\sqsubseteq \emptyset A, \ldots$
Characterization of Subsumption for Ground Concepts

for $\mathcal{O} = \emptyset$:

- $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq_{\emptyset} D_1 \sqcap \cdots \sqcap D_m$ iff for all D_j there is a C_i with $C_i \sqsubseteq_{\emptyset} D_j$.
- $\exists r. C \sqsubseteq_{\emptyset} \exists s. D$ iff $r = s$ and $C \sqsubseteq_{\emptyset} D$.
- $A \sqsubseteq_{\emptyset} B$ for $A, B \in \mathbb{N}_C$ iff $A = B$.
- $A \not\sqsubseteq_{\emptyset} \exists r. B$, $\exists r. B \not\sqsubseteq_{\emptyset} A$, ...

for $\mathcal{O} \neq \emptyset$:

- more cases for axioms in \mathcal{O}
- $A \sqsubseteq_{\mathcal{O}} B$ with $A, B \in \mathbb{N}_C$ and $A \neq B$ can hold, e.g., if

$$A \sqsubseteq \exists r. C, \ C \sqsubseteq D, \ \exists s. D \sqsubseteq B, \ r \sqsubseteq s$$

are in \mathcal{O}.

Manchester, July 1, 2012
Unification for the \mathcal{EL} Family
Characterization of Subsumption for Ground Concepts

for $\mathcal{O} = \emptyset$:

- $C_1 \sqcap \cdots \sqcap C_n \subseteq_\emptyset D_1 \sqcap \cdots \sqcap D_m$ iff for all D_j there is a C_i with $C_i \subseteq_\emptyset D_j$.
- $\exists r. C \subseteq_\emptyset \exists s. D$ iff $r = s$ and $C \subseteq_\emptyset D$.
- $A \subseteq_\emptyset B$ for $A, B \in \mathcal{N}_C$ iff $A = B$.
- $A \not\subseteq_\emptyset \exists r. B, \exists r. B \not\subseteq_\emptyset A, \ldots$

for $\mathcal{O} \neq \emptyset$:

- more cases for axioms in \mathcal{O}
- $A \subseteq_\mathcal{O} B$ with $A, B \in \mathcal{N}_C$ and $A \neq B$ can hold, e.g., if

$$A \subseteq \exists r. C, \ C \subseteq D, \ \exists s. D \subseteq B, \ r \subseteq s$$

are in \mathcal{O}.
- two different characterizations in [KR’12] (for \mathcal{EL}) and [IJCAR’12] (for \mathcal{ELH}_{R+})
Locality and the Brute-Force Approach

flat atom: concept name or existential restriction $\exists r. A$ with $A \in N_C$

assumption: unification problem Γ and all GCIs in the \mathcal{ELH}_{R^+}-ontology \mathcal{O} contain only (conjunctions of) flat atoms
Locality and the Brute-Force Approach

flat atom: concept name or existential restriction \(\exists r.A \) with \(A \in N_C \)

assumption: unification problem \(\Gamma \) and all GCIs in the \(\mathcal{ELH}_{R+} \)-ontology \(\mathcal{O} \) contain only (conjunctions of) flat atoms

\(\text{At}_{tr} := \) atoms in the unification problem and \(\mathcal{O} \) ("closed under transitive roles")

\(\text{At}_{nv} := \text{At}_{tr} \setminus N_v \)
Locality and the Brute-Force Approach

flat atom: concept name or existential restriction $\exists r.A$ with $A \in N_C$

assumption: unification problem Γ and all GCIs in the \mathcal{ELH}_{R^+}-ontology \mathcal{O} contain only (conjunctions of) flat atoms

$A_{tr} :=$ atoms in the unification problem and \mathcal{O} (“closed under transitive roles”)
$A_{nv} := A_{tr} \setminus N_v$

acyclic assignment S:

$S_X = \{B\} \quad \sigma_S(X) = B$
$S_Y = \{\exists s.A, \exists r.X\} \quad \sigma_S(Y) = \exists s.A \land \exists r.B$

↑
local substitution
Locality and the Brute-Force Approach

flat atom: concept name or existential restriction $\exists r. A$ with $A \in N_C$

assumption: unification problem Γ and all GCIs in the \mathcal{ELH}_{R^+}-ontology O contain only (conjunctions of) flat atoms

$At_{tr} :=$ atoms in the unification problem and O (“closed under transitive roles”)
$At_{nv} := At_{tr} \setminus N_v$

acyclic assignment S:

$S_X = \{B, \exists r. X\}$
$S_Y = \{\exists s. A, \exists r. X\}$

$\sigma_S(X) = B \cap ?$
$\sigma_S(Y) = \exists s. A \cap \exists r. (B \cap ?)$

↑
local substitution
Locality and the Brute-Force Approach

flat atom: concept name or existential restriction $\exists r. A$ with $A \in NC$

assumption: unification problem Γ and all GCIs in the \mathcal{ELH}_{R^+}-ontology \mathcal{O} contain only (conjunctions of) flat atoms

$At_{tr} :=$ atoms in the unification problem and \mathcal{O} ("closed under transitive roles")

$At_{nv} := At_{tr} \setminus N_v$

acyclic assignment S:

$S_X = \{ B \}$ \hspace{5cm} $\sigma_S(X) = B$

$S_Y = \{ \exists s. A, \exists r. X \}$ \hspace{5cm} $\sigma_S(Y) = \exists s. A \sqcap \exists r. B$

↑

local substitution

Goal: Every unifiable unification problem has a local unifier.
Necessary Restriction

\(\mathcal{O} \) is cycle-restricted if

\[C \not\sqsubseteq_{\mathcal{O}} \exists r_1 \ldots \exists r_n. C \]

holds for all concept descriptions \(C \) and \(r_1, \ldots, r_n \in N_R, n \geq 1. \)
Necessary Restriction

\(\mathcal{O} \) is cycle-restricted if

\[
C \not\subseteq_{\mathcal{O}} \exists r_1 \ldots \exists r_n.C
\]

holds for all concept descriptions \(C \) and \(r_1, \ldots, r_n \in N_R, n \geq 1 \).

This ensures that variables have no cyclic dependencies under unifiers, i.e., that there is no subsumption \(\gamma(X) \subseteq_{\mathcal{O}} \exists r_1 \ldots \exists r_n.\gamma(X) \) for any substitution \(\gamma \).

If \(\mathcal{O} \) is cycle-restricted, then every unifiable unification problem has a local unifier.

[KR’12, IJCAR’12]
Necessary Restriction

\[\mathcal{O} \text{ is cycle-restricted if} \]
\[C \nsubseteq_\mathcal{O} \exists r_1 \ldots \exists r_n. C \]
holds for all concept descriptions \(C \) and \(r_1, \ldots, r_n \in \mathbb{N}_R, n \geq 1 \).

This ensures that variables have no cyclic dependencies under unifiers, i.e., that there is no subsumption \(\gamma(X) \nsubseteq_\mathcal{O} \exists r_1 \ldots \exists r_n. \gamma(X) \) for any substitution \(\gamma \).

If \(\mathcal{O} \) is cycle-restricted, then every unifiable unification problem has a local unifier. \[\text{[KR’12, IJCAR’12]} \]

Cycle-restrictedness can be checked in polynomial time.
Rule-based approach

nondeterministic rules can be applied to a subsumption in order to solve it:

\[\exists r.X \sqcap \exists r.Y \sqsubseteq \exists r.A \]

with more GCIs in \(O \), we have more choices:

\[C \sqsubseteq O \exists r.B \]

\[B \sqsubseteq \exists r.X \text{ (ground)} \quad \text{and} \quad C \sqsubseteq \exists r.X \text{ (ground)} \]

\[X \sqsubseteq A \]

\[Y \sqsubseteq A \]
Rule-based approach

nondeterministic rules can be applied to a subsumption in order to solve it:

\[\exists r.X \sqsubseteq \exists r.Y \sqsubseteq \? \exists r.A \]

- \[X \sqsubseteq \? A \rightarrow S_X := S_X \cup \{A\} \]
- \[Y \sqsubseteq \? A \rightarrow S_Y := S_Y \cup \{A\} \]
Rule-based approach

nondeterministic rules can be applied to a subsumption in order to solve it:

\[\exists r. X \sqsubseteq \exists r. Y \sqsubseteq \exists r. A \]

\[Y \sqsubseteq A \rightarrow S_y := S_y \cup \{A\} \]

eager rules are always applied first:

\[\exists r. A \sqsubseteq B \quad \text{(ground)} \quad \rightarrow \quad \text{fail if } \exists r. A \not\sqsubseteq \mathcal{O} B \]
Rule-based approach

nondeterministic rules can be applied to a subsumption in order to solve it:

\[\exists r. X \sqsubseteq^? A \rightarrow S_X := S_X \cup \{A\} \]

\[\exists r. Y \sqsubseteq^? A \rightarrow S_Y := S_Y \cup \{A\} \]

eager rules are always applied first:

\[\exists r. A \sqsubseteq^? B \]

(ground)

\[\text{fail if } \exists r. A \not\sqsubseteq^? B \]

with more GCIs in \(\mathcal{O} \), we have more choices:

\[C \sqsubseteq^? \exists r. X \]

(C ground)

\[C \sqsubseteq^? \exists r. B \rightarrow B \sqsubseteq^? X \]
SAT translation

propositional variables \([C \sqsubseteq D]\) for all \(C, D \in \text{At}_{\text{tr}}\)

valuation \(\tau \rightarrow S_X\) contains \(D\) iff \(\tau([X \sqsubseteq D]) = 1\)
SAT translation

propositional variables \([C \sqsubseteq D]\) for all \(C, D \in \text{At}_{\text{tr}}\)

valuation \(\tau \rightarrow S_X\) contains \(D\) iff \(\tau([X \sqsubseteq D]) = 1\)

\[\sigma_S(X) \subseteq \sigma_S(D)\]
SAT translation

Propositional variables \([C \sqsubseteq D]\) for all \(C, D \in \text{At}_{\text{tr}}\)

valuation \(\tau \rightarrow S_X\) contains \(D\) iff \(\tau([X \sqsubseteq D]) = 1\)

\[\sigma_S(X) \sqsubseteq \sigma_S(D)\]

Propositional formulae:

\[\exists r.A \sqsubseteq \exists r.X \rightarrow [A \sqsubseteq X]\]
SAT translation

propositional variables \([C \sqsubseteq D]\) for all \(C, D \in \text{At}_{tr}\)

valuation \(\tau \rightarrow S_X\) contains \(D\) iff \(\tau([X \sqsubseteq D]) = 1\)

\[\sigma_S(X) \sqsubseteq \sigma_S(D)\]

propositional formulae:

\[\exists r. A \sqsubseteq \exists r. X \rightarrow [A \sqsubseteq X] \lor \bigvee_{\exists r. A \subseteq \emptyset \exists r. B} [B \sqsubseteq X]\]
SAT translation

propositional variables \([C \sqsubseteq D]\) for all \(C, D \in At_{tr}\)

valuation \(\tau \rightarrow S_X\) contains \(D\) iff \(\tau([X \sqsubseteq D]) = 1\)
\[\sigma_S(X) \sqsubseteq \sigma_S(D)\]

propositional formulae:
\[
[\exists r.A \sqsubseteq \exists r.X] \rightarrow [A \sqsubseteq X] \lor \bigvee_{\exists r.A \sqsubseteq \epsilon} \exists r.B [B \sqsubseteq X]
\]

+ clauses asserting the subsumptions in the unification problem
SAT translation

propositional variables \([C \sqsubseteq D]\) for all \(C, D \in \text{At}_{tr}\)

valuation \(\tau \rightarrow S_X\) contains \(D\) iff \(\tau([X \sqsubseteq D]) = 1\)

\(\sigma_S(X) \sqsubseteq \sigma_S(D)\)

propositional formulae:

\[
[\exists r. A \sqsubseteq \exists r. X] \rightarrow [A \sqsubseteq X] \vee \bigvee_{\exists r. A \sqsubseteq \exists r. B} [B \sqsubseteq X]
\]

+ clauses asserting the subsumptions in the unification problem

+ clauses forcing acyclicity of the induced assignment \(S\)
Minimal Unifiers

Both algorithms express the unification problem using the characterization of subsumption.

Soundness: acyclicity of S, soundness of the characterization

Completeness: cycle-restrictedness of O, completeness of the characterization
Minimal Unifiers

Both algorithms express the unification problem using the characterization of subsumption.

Soundness: acyclicity of S, soundness of the characterization

Completeness: cycle-restrictedness of O, completeness of the characterization

SAT translation yields all local unifiers, rule-based approach only some of them.
Minimal Unifiers

Both algorithms express the unification problem using the characterization of subsumption.

Soundness: acyclicity of S, soundness of the characterization

Completeness: cycle-restrictedness of O, completeness of the characterization

SAT translation yields all local unifiers, rule-based approach only some of them.

$\mathcal{X} \subseteq N_v: \sigma \succ_{\mathcal{X}} \gamma$ iff $\sigma(X) \sqsubseteq O \gamma(X)$ for all $X \in \mathcal{X}$

Rule-based approach is complete w.r.t. \succ_{N_v}-minimal unifiers.
Minimal Unifiers

Both algorithms express the unification problem using the characterization of subsumption.

Soundness: acyclicity of S, soundness of the characterization

Completeness: cycle-restrictedness of O, completeness of the characterization

SAT translation yields all local unifiers, rule-based approach only some of them.

$\mathcal{X} \subseteq \mathcal{N}_v$: $\sigma \succ_\mathcal{X} \gamma$ iff $\sigma(X) \subseteq O \gamma(X)$ for all $X \in \mathcal{X}$

Rule-based approach is complete w.r.t. $\succ_{\mathcal{N}_v}$-minimal unifiers.

These algorithms cannot be modified to yield exactly the $\succ_\mathcal{X}$-minimal unifiers while staying in NP. [AiML’12]
Conclusions

Summary:

• three NP-algorithms for \mathcal{ELH}_{R^+}-unification w.r.t. cycle-restricted ontologies
• \succ_{N_v}-minimal unifiers are enough, but more difficult to find
• implementation for empty ontologies

Future Work:

• extend the implementation to cycle-restricted \mathcal{ELH}_{R^+}-ontologies
• general ontologies? fixpoint semantics for cyclic assignments?
• extensions of \mathcal{ELH}_{R^+} ($\mathcal{EL}^+$$,$ $\mathcal{FLE}$$,$ \mathcal{ALC})?
Conclusions

Summary:
- three NP-algorithms for \mathcal{ELH}_{R^+}-unification w.r.t. cycle-restricted ontologies
- \succ_{N^v}-minimal unifiers are enough, but more difficult to find
- implementation for empty ontologies

Future Work:
- extend the implementation to cycle-restricted \mathcal{ELH}_{R^+}-ontologies
- general ontologies? fixpoint semantics for cyclic assignments?
- extensions of \mathcal{ELH}_{R^+} (\mathcal{EL}^+, \mathcal{FLE}, \mathcal{ALC})?

