Explaining Description Logic Entailments in Practice with Evee and Evonne

3rd Workshop on Explainable Logic-Based Knowledge Representation (XLoKR’22), 31st July, 2022
Description Logics and Ontologies

Description Logics

- Well-established formalism for specifying terminological knowledge in Ontologies
- Applications in biology, medicine, semantic web, and more
 - SNOMED CT: medical, over 300,000 concepts
 - BioPortal: repository of bio-medical ontologies, currently hosting 1,004 ontologies defining 14,685,604 terms
 - MOWLCorp: ontologies obtained by web-crawling, containing 20,996 ontologies
Description Logics and Ontologies

Description Logics

- Well-established formalism for specifying terminological knowledge in Ontologies
- Applications in biology, medicine, semantic web, and more
 - SNOMED CT: medical, over 300,000 concepts
 - BioPortal: repository of bio-medical ontologies, currently hosting 1,004 ontologies defining 14,685,604 terms
 - MOWLCorp: ontologies obtained by web-crawling, containing 20,996 ontologies
- With increasing complexity of the ontology, understanding entailments becomes both crucial and difficult
 - Requirement for tools to explain entailments
Current Explanation Tool of Choice: Justifications

Explaining Description Logic Entailments in Practice with **Evee** and **Evonne**

Center for Perspicuous Computing (CPEC) // Christian Alrabbaa, Stefan Borgwardt, Tom Friese, Patrick Koopmann, Julián Méndez, Alexej Popovič

3rd Workshop on Explainable Logic-Based Knowledge Representation (XLoKR'22), 31st July, 2022
Current Explanation Tool of Choice: Justifications
Justifications

Justifications: Minimal subsets entailing given statement

In practice often insufficient:

- can be large
- inferences often not obvious

Showing how to obtain the inference would be better

- simple reasoning steps leading to conclusion
- generally known as proof
A Proof

(stefan, xlok22-9) : presents

xlok22-9 : ScientificTalk

stefan : \exists presents.ScientificTalk

\exists presents.ScientificTalk \sqsubseteq Researcher

stefan : Researcher
Meet the Family

- data structures
- algorithms
- proof generation

Evee-libs
Meet the Family

Evee-libs
- data structures
- algorithms
- proof generation

Evee-protégé

easy integration in Protégé

Explaining Description Logic Entailments in Practice with Evee and Evonne
Center for Perspicuous Computing (CPEC) // Christian Alrabbaa, Stefan Borgwardt, Tom Fries, Patrick Koopmann, Julián Méndez, Alexej Popovič
3rd Workshop on Explainable Logic-Based Knowledge Representation (XLoKR'22), 31st July, 2022
Meet the Family

- **data structures**
- **algorithms**
- **proof generation**

Evee-libs

Evee-protégé

Evonne

easy integration in Protégé

advanced web application

Explaining Description Logic Entailments in Practice with Evee and Evonne

Center for Perspicuous Computing (CPEC) // Christian Alrabbaa, Stefan Borgwardt, Tom Friese, Patrick Koopmann, Julián Méndez, Alexej Popović

3rd Workshop on Explainable Logic-Based Knowledge Representation (XLoKR'22), 31st July, 2022
Proof Generation in Evee-libs

Three basic methods:

- Proofs based on Elk
- Elimination proofs based on Lethe and Fame
- Detailed proofs based on Lethe

In addition:

- Optimization criteria
 - Proof with lowest (weighted) size or depth
- Hide inferences of known terms
1. Proofs Based on ELK

ELK is the state-of-the-art reasoner for the lightweight logic \mathcal{EL}

- good performance on large-scale ontologies
- reasoning based on inference rules

\mathcal{EL} inference rules

- $R_0 \quad \frac{C \sqsubseteq C}{\top}
- R_\top \quad \frac{C \sqsubseteq \top}{\bot}
- R_D \quad \frac{C \sqsubseteq D \cap E}{C \sqsubseteq E}
- R_{\sqcap,1} \quad \frac{C \sqsubseteq D \cap E}{C \sqsubseteq D}
- R_{\sqcap,2} \quad \frac{C \sqsubseteq D \cap E}{C \sqsubseteq D}
- R_{\exists r} \quad \frac{C \sqsubseteq \exists r.D \cap \exists r.E}{C \sqsubseteq \exists r.D}
- R_{\exists s} \quad \frac{C \sqsubseteq \exists s.D}{C \sqsubseteq \exists s.D}$

- existing library and Protégé plugin (Kazakov, Klinov, Stupnikov 2017)
- we add support for optimized proofs (size, depth)
2. Elimination Proofs

- Support **expressive DLs**, no need of explicit inference rules
- Based on one type of inference:

\[
\frac{\alpha_1, \ldots, \alpha_n}{\beta} \quad \text{eliminate } X
\]

where \(\alpha_1, \ldots, \alpha_n \models \beta\), and \(X\) does not occur in \(\beta\)

- Eliminate symbols one by one, until only the conclusion is left
- Computed using **forgetting tools** \textsc{Lethe} and \textsc{Fame}
Example of an Elimination Proof

\[C_1 \sqsubseteq C_3 \sqcup C_2 \]

\[\text{elim. } C_2 \]

\[C_1 \sqsubseteq C_3 \]

\[C_2 \sqsubseteq C_3 \]
Example of an Elimination Proof

\[C_1 \sqsubseteq C_3 \sqcup C_2 \]

\[C_1 \sqsubseteq C_3 \]

\[\text{elim. } C_2 \]

\[A \sqsubseteq \forall r. C_1 \]

\[\text{elim. } C_1 \]

\[A \sqsubseteq \forall r. C_3 \]

\[C_2 \sqsubseteq C_3 \]
Example of an Elimination Proof

\[C_1 \sqsubseteq C_3 \sqcup C_2 \]

elim. \(C_2 \)

\[C_2 \sqsubseteq C_3 \]

elim. \(C_1 \)

\[C_1 \sqsubseteq C_3 \]

\[A \sqsubseteq \forall r. C_1 \]

\[A \sqsubseteq \forall r. C_3 \]

elim. \(r, C_3 \)

\[\forall r. C_3 \sqsubseteq B \]

\[A \sqsubseteq B \]
2. Elimination Proofs

The order in which we eliminate symbols affects the proof size!

How to choose a good order?
2. Elimination Proofs

The order in which we eliminate symbols affects the proof size!

How to choose a good order?

We implemented three strategies:

1. Use heuristics to pick next symbol (LPAR-20/XLoKR-20)
2. Use best-first search together with optimization criterion (IJCAR-22)
 - minimize number of eliminated names
 - optimize for given criterion, e.g. (weighted) tree size
3. Detailed Proofs using LETHE

- Elimination proofs give a high-level perspective on inferences
- Detailed proofs based on LETHE’s inference rules
- However, several challenges needed to be solved:
 - LETHE uses a normal form, which we have to denormalize
 - optimizations need to be deactivated
 - some inferences are performed indirectly through the algorithm, which need to be translated to rule inferences
Meet the Family

Evee-libs
- data structures
- algorithms
- proof generation

easy integration in Protégé

Evee-protégé
- Protégé: standard editor for OWL ontologies
- Easy installation using plugin infrastructure
User Study

We performed a small user study on Evee-protege

- Participants: 10 DL experts
- 5 Tasks + Questions
- Compare different proof methods

First conclusions:

- Preferred method is subjective
- Proof navigation in Protégé sometimes limited
Meet the Family

Evee-libs
- data structures
- algorithms
- proof generation

Evee-protégé

easy integration in Protégé

Evonne
advanced web application

Explaining Description Logic Entailments in Practice with Evee and Evonne
Center for Perspicuous Computing (CPEC) // Christian Alrabbaa, Stefan Borgwardt, Tom Friese, Patrick Koopmann, Julián Méndez, Alexej Popović
3rd Workshop on Explainable Logic-Based Knowledge Representation (XLoKR'22), 31st July, 2022
Advanced Proof Navigation with Evonne
Explaining Description Logic Entailments in Practice with Eve and Evonne

Center for Perspicuous Computing (CPEC) // Christian Alrabbaa, Stefan Borgwardt, Tom Friese, Patrick Koopmann, Julián Méndez, Alexej Popovič

3rd Workshop on Explainable Logic-Based Knowledge Representation (XLoKR 22), 31st July, 2022

Slide 16 of 17
Advanced Proof Navigation with Evonne

Explaining Description Logic Entailments in Practice with Evee and Evonne

Center for Perspicuous Computing (CPEC) // Christian Alrabbaa, Stefan Borgwardt, Tom Friese, Patrick Koopmann, Julián Méndez, Alexej Popović

3rd Workshop on Explainable Logic-Based Knowledge Representation (XLoKR'22), 31st July, 2022
Advanced Proof Navigation with Evonne
Conclusion

Proofs to explain DL entailments

- Library **EVEE**-libs used by frontends **EVEE**-protege and **Evonne**
- **ELK** proofs, elimination proofs, detailed **LETHE** proofs
- Optimization w.r.t. various measures

Future work:

- User study of **Evonne**
- Explain also non-entailments using interpretations or abduction
- Try it out!
- You can try **Evonne** online
- Demo at DL (9.8., 16:00-16:30; 10.8., 10:30-11:00)

Thank you!
Conclusion

Proofs to explain DL entailments

- Library Evee-libs used by frontends Evee-protege and Evonne
- Elk proofs, elimination proofs, detailed Lethe proofs
- Optimization w.r.t. various measures

Future work:

- User study of Evonne
- Explain also non-entailments using interpretations or abduction
Conclusion

Proofs to explain DL entailments

- Library Evee-libs used by frontends Evee-protege and Evonne
- Elk proofs, elimination proofs, detailed Lethe proofs
- Optimization w.r.t. various measures

Future work:

- User study of Evonne
- Explain also non-entailments using interpretations or abduction

Try it out!

- You can try Evonne online
- Demo at DL (9.8., 16:00-16:30; 10.8., 10:30-11:00)
Conclusion

Proofs to explain DL entailments

- Library Evee-libs used by frontends Evee-protege and Evonne
- Elk proofs, elimination proofs, detailed Lethe proofs
- Optimization w.r.t. various measures

Future work:

- User study of Evonne
- Explain also non-entailments using interpretations or abduction

Try it out!

- You can try Evonne online
- Demo at DL (9.8., 16:00-16:30; 10.8., 10:30-11:00)

Thank you!