
Faculty of Computer Science
Institute of Systems Architecture, Chair for Computer Networks

Diploma Thesis

Calculating Similarity
of Arbitrary Reports

Veronika Thost

Professor: Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
Tutor: Dr.-Ing. Daniel Schuster (TU Dresden)
External Tutor: Dr.-Ing. Konrad Voigt (SAP Research Dresden)

Submitted August 31, 2012

TASK

III

ABSTRACT

Abstract Reporting is an essential part of business, today, and people spend a lot of time
creating meaningful visualizations of their most important data. Surprisingly, the reuse of
reports (i.e., applying the same visualization or query on di↵erent data) is not common. The
recommendation of proven, existing queries represents one part of this reuse. Since there are
several report formats and the reports target di↵erent data sources, the task of matching
report queries for recommendation is very complex and has not been addressed, yet. Recent
works that aim at query recommendation – usually to support the user in database add-ons –
focus on collaborative approaches or target query completion. The idea behind this study
is to follow a content-based, combined approach to match report queries. The use of both
an abstract and a concrete representation of the queries allows the application of di↵erent,
well-known matching techniques in parallel. The focus of this work is to evaluate the impact
of similarity search and schema matching for matching queries. For that, query matching
algorithms based on the two techniques are developed: an e�cient, index-based comparison
using similarity search and a fine-grained matching of the parse trees of the queries with
schema matchers. Next to the presentation of an e↵ective combination of those algorithms, a
major contribution of this thesis is the creation of an empirical data set of 150 queries with
the corresponding similarity ratings for all 22,500 query pairs for a comprehensive evaluation.

V

CONTENTS

Contents

Task III

Abstract V

1. Introduction 1
1.1. Motivation for Query Matching . 1
1.2. Scope of this Thesis . 2

2. Preliminaries 3
2.1. Queries . 3
2.2. Similarity Search . 4

2.2.1. Index Search . 4
2.2.2. Calculating Similarity Values for Text 4

2.3. Schema Matching . 5
2.3.1. Schema Matchers . 6
2.3.2. Similarity Values of Schema Matchers 7

2.4. Measurements . 8
2.4.1. Usage Accuracy . 8
2.4.2. Rating Accuracy . 10
2.4.3. Ranking Accuracy . 10

2.5. Conclusion . 11

3. Problem Analysis and Definition 13
3.1. Query Recommendation in remix . 13
3.2. The Query Matching Problem . 14

3.2.1. An Example . 14
3.2.2. Challenges in Query Matching . 16

3.3. Requirement Definition . 16
3.4. Problem Definition . 17

3.4.1. Query Matching . 17
3.4.2. Query Recommendation . 18

3.5. Conclusion . 19

4. Related Work 21
4.1. Query Recommendation and Matching . 21

4.1.1. Query Recommendation . 21
4.1.2. Query Optimization . 24
4.1.3. Others . 26

4.2. Matching Techniques . 26
4.2.1. Similarity Search . 26
4.2.2. Schema Matching . 26

4.3. Discussion . 27
4.3.1. Classification . 27

VII

CONTENTS

4.3.2. Comparison . 29
4.4. Conclusion . 30

5. Query Matching – A Combined Approach 33
5.1. Query Recommendation Approach . 33
5.2. The Combined Matcher . 34

5.2.1. The Feature Matcher . 35
5.2.2. The Schema Matcher . 40
5.2.3. Aggregation and Selection . 45

5.3. Conclusion . 47

6. Evaluation 49
6.1. Empirical Study . 49

6.1.1. Data Set Alternatives . 49
6.1.2. Preparation . 50
6.1.3. Design and Implementation . 51
6.1.4. Results . 51

6.2. Overview . 53
6.2.1. Data Sets . 53
6.2.2. Experiment Design . 54
6.2.3. Architecture and Implementation . 55
6.2.4. Threats of Validity . 57

6.3. Results . 58
6.3.1. Configuration and Evaluation of Schema Matchers 58
6.3.2. Evaluation of the Combined Matcher 61

6.4. Summary and Discussion . 65
6.4.1. Summary . 65
6.4.2. Discussion . 66

7. Conclusion And Future Work 67
7.1. Conclusion . 67
7.2. Future Work . 68

A. Appendix 71

B. List of Figures 87

C. Bibliography 89

Confirmation 95

VIII

1. Introduction

Reporting is an essential part of business, today, and people spend a lot of time creating good
looking and meaningful visualizations of their most important data. Surprisingly, the reuse
of reports (i.e., applying the same visualization or query on di↵erent data) is not common.
Therefore, SAP Research addresses this problem with the development of remix [58], a tool
that supports the user in report creation. A report presents the visualization of a query on
a data source (e.g., a bar chart presenting the average salary of employees recorded in a
database). And remix assists the user by proposing, for example, a specific visualization for a
data source, which has been mined from a similar, existing report.

This thesis supports the finding of similar reports by calculating similarities for arbitrary
reports. It focuses on matching the queries contained in the reports and proposes an approach
for content-based query recommendation. Thus, it helps to overcome one major challenge of
report creation, query formulation.

State-of-the-art reporting tools usually provide auto completion regarding table and col-
umn names to assist the user with query formulation [3, 6]. Other approaches to support
the user include recommender systems [22, 38, 78], visual query languages [5, 21], keyword
search in databases [57, 67], and the use of predefined example queries [8, 14]. However, the
existing tools do not focus on the contents of the queries (e.g., there is no automated support
for a user who has a complex query in mind but needs help with the formulation). Hence,
system-independent recommendation of proven, similar examples (i.e., queries from arbitrary
real-world reports) is not provided by them – in particular, because of the di�culties with
query matching, which compares the query issued by a user to the queries stored in the system.

1.1. Motivation for Query Matching

The task of matching two queries is non-trivial. Especially, if it targets a precise comparison.
Real-world queries occur in endless numbers, di↵erent formats, and refer to diverse environ-
ments. In addition, semantic di↵erences and inconsistencies between queries are objections that
need to be considered. There are, further, di↵erent design possibilities to describe semantically
equivalent concepts. Although standardized query languages exist, their multiplicity and
plenty implementations create a very heterogeneous environment for a matching system, or
matcher, to act in. Moreover, the data a query describes may be very domain-specific, which
is reflected in the language used, too. It is not possible to cope with these syntactic and
semantic di↵erences without a fine-grained and comprehensive consideration of queries and
sound reasoning.

The challenges outlined above hint at di↵erent aspects of and information about queries. Next
to the textual consideration of the query (i.e., a purely syntactic consideration), its semantics
(i.e., how the syntax is interpreted), and external information (e.g., about the environment)
can be exploited for calculating similarity of queries.

1

1. Introduction

The motivation behind this work is to explore content-based query matching techniques
(i.e., approaches that focus on the information contained in the queries) that could be used to
calculate the similarity between queries. Based on this analysis, a combined query matching
approach is to be developed. The problems mentioned above imply the need for comprehen-
sive matching techniques, which apply the information present in queries to determine their
similarity. Therefore, it makes sense to combine existing methods that are able to capture
individual aspects of queries to calculate a similarity that reflects several dimensions of existing
information.

Query matching with the goal of recommending queries to a user is a very recent area
of research, which is conceptually described by Khoussainova et al. [50]. Implementations
are provided by few advanced query completion approaches [47, 51, 87] and recommender
systems [16, 22, 37, 38, 48, 77, 78]. The latter, however, focus more on user preferences
than the queries themselves to determine query similarity. Earlier studies that include query
matching aim at supporting the users of database systems [23, 34] or target query optimization
[86, 89, 91]. But, none of the existing systems exploits the information given with the queries
to a maximum (e.g., by using a combination of several, useful query matching approaches).
In addition, there exists neither a general classification of query matching techniques nor
appropriate evaluations that measure the matching quality. However, a thorough exploration
and evaluation of query matching approaches would permit the creation of a query matching
algorithm that makes the most of the information it is given.

1.2. Scope of this Thesis

This project aims at creating a query recommendation system for remix, a Business Intelli-
gence (BI) tool currently developed by SAP Research. This query recommendation system
recommends queries using query matching – by calculating similarity values for queries based
on a comprehensive comparison. To the best of our knowledge, such a matcher does not
exist, to date. The main di↵erence to other query matching approaches is that it considers
various aspects of the input (i.e., it combines di↵erent matching algorithms) and delivers
a single value as an overall similarity. Furthermore, its quality is assessed in an extensive
evaluation. In particular, the performance of traditional schema matching algorithms (e.g.,
name matching) is examined. Marcel and Negre [61] state that, to date, there are no adequate
data sets to evaluate query recommendation systems (i.e., sets of real-world queries where the
similarity for pairs of queries has been rated by real persons). Hence, the construction of such
a reference data set presents a major contribution of this thesis.

The structure of this work is as follows: After a short introduction of the terminology
(in Chapter 2), a detailed analysis of the query matching problem describes the task to be
solved (in Chapter 3). Related work in query recommendation and matching is presented and
classified in Chapter 4. In the main part, a combined query matching approach integrating
several content-based matching methods is conceptualized (in Chapter 5). Finally, a reference
data set is developed, and the query recommendation system is evaluated in an empirical
evaluation (in Chapter 6).

2

2. Preliminaries

This chapter introduces the theoretical foundations of this work. First, it describes the concept
of queries. Then, it covers preliminaries in the fields of similarity search and schema matching,
which are the methods the combined query matching approach proposed in this thesis builds
upon. Lastly, selected measurements for evaluating query recommendation and matching are
presented.

2.1. Queries

The focus of this work is on matching queries extracted from reports. Such a query is a unit
of text formulated in a specific query language. The latter usually depends on the tool that
was used to create the report. Query languages generally refer to a particular data model
the sources queried have to correspond to. These data models can be classified according to
the degree of structure they maintain (i.e., unstructured, semi-structured, or structured) and,
furthermore, according to the type of structure they create (e.g., a tree, a relational, or a
multidimensional structure). This work focuses on queries over relational data sources since
they are the models most common for current data warehouses. The most popular relational
query language is SQL [10].

In order to reason about queries, a general data model describing the results of the query is
insu�cient. This is because queries describe complex operations on data, which need to be
included in a detailed analysis (i.e., the semantics of the language need to be considered, too).
For that reason, theoretic work on queries usually uses relational algebra to express relational
queries. Also, several extensions of relational algebra have been developed to capture the
features provided by current relational query languages, in the past. Exemplary translations
of two SQL queries into relational algebra are given in Example 2.1.

Example 2.1. Below, two SQL queries, q0 and q1, are shown together with the respective
representations in relational algebra.

q0 :
SELECT name , s a l e s
FROM department
WHERE manager=’Chang ’

⇡

name,sales

(�
manager=0

Chang

0(department))

q1 :
SELECT name
FROM dept d JOIN manager m ON d . id=m. dept id
WHERE t o t a l s a l e s >50000

⇡

name

(�
totalsales>50000(⇢

d/dept

(dept) ./
d.id=m.deptid

⇢

m/manager

(manager)))

3

2. Preliminaries

2.2. Similarity Search

This section gives an overview of similarity search, a methodology for comparing objects. In
this thesis, similarity search is applied for a textual comparison of queries. Therefore, the
concept of index search and a function to capture the degree of similarity between two textual
documents, which is used in the search engine library Apache Lucene [1], are described, in the
following.

Similarity search addresses the nearest neighbor problem, an optimization problem for finding
closest points in, most often, metric spaces. On the basis of Skiena [82], the problem is
described as follows:

“Given a set P of points in a metric space of n dimensions and a point q, find a point
in P that is closest to q.”

Similarity search is used to compare a given object against a collection of objects in or-
der to find those that are most similar to the given object. In case a metric space is considered,
the objects can be seen as points in the space and are defined by vectors in its dimensions, as it
is described by Zezula et al. [90]. Hence, the problem of matching the objects is reduced to a
vector comparison. The similarity of the objects is then defined by the distance of the vectors.
That distance is usually computed by means of the Euclidean Distance1 or the Manhattan
Distance2.

2.2.1. Index Search

Similarity search as a textual comparison can be based on an inverted index. An inverted
index is a data structure that supports fast full text search for a set of documents. For
that, the contents of the documents to be stored are processed and stored separately (e.g.,
individual words), in so-called fields, with references to the documents they are part of. As
a consequence, a search for specific content can be performed e�ciently and immediately
yields the corresponding documents. Typical algorithms achieve a logarithmic complexity in
dependence of the number of unique terms in the documents [45, 64].

2.2.2. Calculating Similarity Values for Text

The calculation of query similarity regarding specific terms in the queries is based on Informa-
tion Retrieval (IR) methods that search specific terms in a set of documents. In particular,
it uses a combination of the Boolean model of Information Retrieval3 and the Vector Space
Model of Information Retrieval4, which is described in the Apache Lucene documentation
[12]. Besides the combination of the two approaches, Apache Lucene includes further factors

1The Euclidean Distance represents the general straight-line distance between two points in an n-dimensional
Euclidean space. Given two points p and q, it is defined as d

euclid

(p, q) =
pP

n

i=1(pi � q

i

)2 [85].
2The Manhattan Distance describes the length of the shortest paths between two points p and q that go along
horizontal and vertical segments. It is defined regarding the Euclidean plane (i.e., the two-dimensional
Euclidean space). For the points p = (x

p

, y

p

) and q = (x
q

, y

q

), it is calculated as d

manhattan

(p, q) =
|x

p

� x

q

|+|y
p

� y

q

| [18].
3The Boolean model of Information Retrieval considers the documents to be searched as sets of terms. The
search query consists of terms and operators from boolean logic, and documents are retrieved if they fulfill
that search query [84].

4In the Vector Space Model of Information Retrieval, the search query and the documents are seen as vectors
in an n-dimensional space for n separate terms. The relevance of a document w.r.t. the query is then
computed based on the values in the vectors [75].

4

2.3. Schema Matching

in the calculation. The formula specified for the Apache Lucene Project [1] may be simplified,
because this work omits the boosting of specific terms or documents (i.e., queries). This is
because the boosting of specific information would make assumptions about the input (i.e.,
what parts are more important), which cannot be made regarding an arbitrary set of queries,
in general. Let q

s

be a search query looking for specific terms in a set of documents, in the
following. Accordingly adapted, the function calculating a score for a document d w.r.t. q

s

is
described below together with its individual factors:

fscore(q
s

, d) = coord(q
s

, d) ⇤ qNorm(q
s

) ⇤
X

t2q
s

(tf(t, d) ⇤ idf(t)2)

• tf(t, d), representing the term frequency, describes how often a term t appears in
document d (i.e., tf(t, d) =

p
frequency).

• idf(t), the inverse document frequency, is a factor that weighs higher terms that
only occur in few documents (i.e., given the set D of all documents, idf(t) = 1 +

ln |D|
|{d|d2D,t2d}|+1).

• coord(q
s

, d) includes the total similarity of the terms in both the query and the document
under consideration by specifying how many of the terms of the query are found in the
document.

• qNorm(q
s

) aims at normalizing the similarity value of one search such that di↵erent
search tasks become better comparable. It is the inverse of the square root of the sum
of the squared inverse document frequencies (i.e., qNorm(q

s

) = 1r P
t2q

s

(idf(t))2
).

Note that the above formula, especially, supports documents with contents referring to di↵erent
kinds of fields, which are comparable to aspects (e.g., considering a book as document, its
terms could be discerned according to their occurrence in the title, text, or ISBN). Then the
term frequency is evaluated w.r.t. the respective fields instead of the whole document.

2.3. Schema Matching

In this thesis, special attention is given to schema matching algorithms. They are applied in
the concept of this work for a detailed syntactic comparison of queries. Since the parse tree
of queries can be regarded as a schema structure, schema matchers naturally can be applied
for matching them. This section presents foundations of schema matching, selected schema
matching algorithms, and approaches to combine the results of several matching algorithms.
The latter represent an important means to form complex, combined matching algorithms.

A schema basically is a tree. In the following, its nodes are called elements and have a
name associated with them. The leaves of the tree correspond to the attributes in the schema.
Attribute nodes are additionally annotated with type information. Based on Rahm and
Bernstein [70], the schema matching problem is described as follows:

“Given two schemas as input, produce a mapping between the elements of the two schemas that
correspond semantically to each other.”

Schema matching algorithms, so-called schema matchers, map the elements of two schemas
that correspond semantically to each other. For that, the cartesian product of element-to-
element similarity values is computed between the schemas. It constitutes a matrix of pair-wise

5

2. Preliminaries

similarity values. The values in this matrix determine the degree of correspondence between
the pairs of elements. Elements that correspond to each other are called matches for each other.

Schema matching algorithms apply linguistic methods, structural analysis, domain knowledge,
and past mappings in order to create a mapping between two database schemas. Several
traditional schema matchers, evaluated in this study, are described next.

2.3.1. Schema Matchers

Rahm and Bernstein [70] give a good overview of di↵erent kinds of schema matchers. This
thesis considers only matchers that work schema-only based (i.e., they do not consider
information contained in instances, which do not exist in the query context). Nevertheless,
element-level (i.e., for matching two elements only the information in those two elements is
considered) as well as structure-level matchers (i.e., also information of other, usually related,
elements is considered for matching a pair of elements) are evaluated regarding query matching.
Most matchers concentrate on the names and text contained in the schemas and are thus
linguistic approaches. On the contrary, constraint-based approaches focus on other information
that would restrict the possible instances of the schema (e.g., type information). The di↵erent
traditional matchers that are considered in this thesis are described below.

Name Matcher The Name Matcher compares the names associated with the schema el-
ements. According to Rahm and Bernstein, “Name-based matching matches schema
elements with equal or similar names.” For the computation of a concrete similarity
value, established string similarity algorithms [25] can be applied.

Path Matcher The Path Matcher is an extension of the Name Matcher. It considers not
only the names of the elements to be matched, but also those of the respective ancestors
in the schema. While retaining the order of the ancestors, the Path Matcher combines
their names to a so-called name-path. Then, two elements are matched by comparing
the name-paths associated with them.

Type Matcher The Type Matcher performs a comparison of the data types of all attributes
in the schemas. For that, it applies a predefined mapping, which specifies the similarity
between di↵erent data types.

Parent Matcher The Parent Matcher compares two elements w.r.t. their direct ancestors,
or parents, in the schema. Thus, it assumes two elements to be similar if their parents
correspond to each other. Note that, to determine the correspondence of the parents,
their similarity has to be known (e.g., it may be computed in advance with another
matcher).

Children Matcher Analogous to the Parent Matcher, the Children Matcher matches a pair
of elements by comparing the respective sets of direct successors in the two schemas.
Thereby, it has to apply a function that determines the similarity of two sets of schema
elements.

Sibling Matcher The Sibling Matcher compares two schema elements by using information
about their siblings (e.g., if there is an overlap in the sets of the siblings of two elements).
Its processing, thus, is similar to that of the children matcher.

Leaf Matcher The Leaf Matcher matches two elements by comparing all those of their
successors that are leaves (i.e., attributes in the schema). Hence, it classifies two schema
elements as similar if the attributes finally descending from them are similar.

6

2.3. Schema Matching

Since schema matchers perform a pair-wise comparison between all elements of two schemas,
the complexity of the algorithms is at least quadratic in the number of elements in the schemas.
However, some of the matchers described above, namely the Children and the Sibling Matcher,
even have a cubic worst-case complexity. The latter can be overcome in the implementation
by bu↵ering the pair-wise similarity values between all the elements in the schemas matched.

2.3.2. Similarity Values of Schema Matchers

Schema matching systems like COMA [29] and Cupid [59] often apply several matchers in a
row in order to achieve better results. Further, the individual matchers compute so-called sim-
ilarity values for all element pairs. This gives rise to the question how the similarity between
two schema elements is to be determined by aggregating the results of several matchers, on the
one hand. On the other hand, strategies for selecting the similarity values that really express
a correspondency (e.g., all values above a given threshold) have to be developed. Strategies
for both have been proposed in the last decade, an overview is provided by Peukert et al. [69].
In particular, this topic is addressed by Do and Rahm [28, 29], who specify several methods
that are described in the following paragraphs.

Do and Rahm discern four aggregation strategies: Max, Min, Weighted, and Average. As it is
indicated by the names, Max uses the maximum of the given values and Min the minimum,
while with both strategies other values are disregarded entirely. In contrast, Weighted considers
the values of all matchers by weighting them according to a predefined scheme (e.g., such
weights can be found using machine learning). Average presents a specific case of Weighted
where all matchers are assigned the same weight.

The strategies developed by Do and Rahm for selection are MaxN, MaxDelta, and Threshold.
A schema matching algorithm calculates similarity values for all element pairs between two
schemas. A selection strategy can be described as a function applied to the result of such a
matcher. The two strategies MaxN and MaxDelta, in particular, consider the similarity values
in the context of a specific match task.

For the description of the selection strategies, consider two ordered sets S and T containing
all the elements of two schemas that are matched, respectively. The matrix M

S,T

contains
the results of matching S and T , the similarity values v 2 [0..1], calculated for all pairs of
elements between the two schemas. A selection strategy adapts the values in this matrix.
M

S,T

is indexed with the positions of the elements in the sets (i.e., m
ij

denotes the simi-
larity value between the elements at positions i and j in S and T , respectively). Further,
n rowmin(n, s,M

S,T

), n rowmin : [0..|T |] ⇥ [0..|S|] ⇥ M

S,T

! [0..1], extracts the n best
matches for a schema element at index s in S w.r.t. a specific match task and returns the
minimal similarity value regarding the elements of that set (i.e., the minimum in the sth-row
of M

S,T

). Function n colmin : [0..|S|]⇥ [0..|T |]⇥M

S,T

! [0..1] proceeds equivalently w.r.t.
the elements in T . The selection strategies, next, are described as functions adapting the
values m

i,j

in M

S,T

, the result given by a matcher.

MaxN considers only those matches similar with similarity values at least equal to the
minimum of the n best values for a given parameter n:

select

MaxN

(n,m
i,j

)

=

⇢
m

i,j

if m
i,j

� min(n rowmin(n, i,M
S,T

), n colmin(n, j,M
S,T

))
0 else

7

2. Preliminaries

Above, min denotes a function selecting the minimum of two values. MaxDelta con-
siders those matches similar having values within the range of a certain interval, which
is derived from the maximum value of the best match using a special delta-parameter d 2 [0..1]:

select

MaxDelta

(d,m
i,j

)

=

⇢
m

i,j

if m
i,j

� (1� d) ⇤min(n rowmin(1, i,M
S,T

), n colmin(1, j,M
S,T

))
0 else

Lastly, Threshold does select all values that are at least as large as a predefined threshold
t 2 [0..1]:

select

Threshold

(t,m
i,j

) =

⇢
m

i,j

if m
i,j

� t

0 else

A detailed example for the application of aggregation and selection strategies is given in
Chapter 5.

2.4. Measurements

In the area of recommender systems, the recommendation quality is usually measured regarding
the three properties overall usage (i.e., if the recommendations presented by a system are
helpful altogether), rating (i.e., if the importance of a recommendation is predicted correctly),
and ranking accuracy (i.e., if the order of the recommendations makes sense). This section
introduces the measures applied in this study. Since the focus of this work is on matching
queries for finding recommendations, the usage accuracy, presented first, is considered most
important. Measures from the other classes are only covered marginally.

2.4.1. Usage Accuracy

To measure the usage accuracy, traditional metrics from Information Retrieval can be con-
sidered – an overview is presented by Singhal [81]. Three of the probably most important
measures, precision, recall, and F-measure, are described in this section. Further, precision@k,
an adaptation of precision for the recommendation case is regarded.

In Information Retrieval, the quality of recommendation is usually measured by comparing
the recommendations provided by a system to those that are classified as recommendations in
a reference set. For an example, consider Figure 2.1. It shows two ovals: the grey-marked
recommendations R returned by a system, the so-called positives, and the recommendations
of a reference set R0. Both R and R

0 are sets of pairs containing a recommendation and a
corresponding rating value. According to Do [28], there are three subsets, which describe the
recommendations that were identified correctly, I (i.e., I = R \R

0), those that were falsely
classified as recommendations, F (i.e., F = R \ I), and the recommendations that were missed,
M (i.e., M = R

0 \ I).

Based on this classification, there are a number of quality measurements, presented in
the following.

8

2.4. Measurements

Figure 2.1.: The recommendations R of a recommendation system compared to the recommendations
R

0 of a reference set

Precision describes the accuracy of the recommendation by relating the recommendations
identified correctly with all recommendations determined. It is defined as

pr =
|I|
|R| =

|I|
|I|+|F |

Recall describes the completeness of the result. It is represented by the share of real
recommendation that were found, and specified as

re =
|I|
|R0| =

|I|
|I|+|M |

F -Measure combines precision and recall in order to neglect none of them in favor of the
other (e.g., precision could easily be maximized by returning only very few correct
recommendations, but disregarding the retrieval of a complete result). It is defined as
the harmonic mean of precision and recall, per default5:

F1 =
2 ⇤ pr ⇤ re
pr + re

Note that precision, recall, and F -measure, all range between 0 and 1, with 1 representing
the best value. The three metrics are usually applied to measure the quality of matching
algorithms [28, 29]. Such algorithms compare two sets of items to each other to find all items
that are similar.

In this work, however, the goal is finding the best recommendations. Thus, the evalua-
tion should focus on the (sub)list of actual recommendations of a system. For that, the
set-theoretic approach of the three measures presented above is often not adequate. Especially,
the information given by recall, in this context, is not very meaningful. Hence, in this work,
the query matching approaches are primarily evaluated regarding the k topmost results, which
would present their recommendations. The corresponding measure is called precision@k.

Precision@k describes the accuracy of the result regarding a given cuto↵ rank k. Considering
the set R

f

✓ R of the best k recommendations in R (i.e., |R
f

|= k), it is defined as

pr@k =
|I \R

f

|
|R

f

|
5Note that F -measure, in general, is a metric relating precision and recall. Its definition depends on a variable
�, which specifies the weighting of the factors. It is calculated as F

�

= (1 + �

2) ⇤ pr⇤re
�

2⇤pr+re

. The default

version calculating the harmonic mean uses � = 1 and is also called F1-Measure [20].

9

2. Preliminaries

The measures presented next are more specific for the recommendation case. Although it is
not explicitly stated, they are evaluated w.r.t. a given cuto↵ rank k. Hence, they are defined
regarding the set of topmost recommendations R

f

✓ R.

2.4.2. Rating Accuracy

To determine the rating accuracy of a system, the rating values predicted by the system have
to be compared to those given in a reference set. Corresponding metrics usually measure the
error of the system. This work considers the Mean Absolute Error (MAE), which is, according
to Shani and Gunawardana [80], one of the metrics most often applied for recommender
systems.

MAE describes the average deviation of the predicted rating of a recommendation from its
actual value. Let v and v

0 be the rating of a recommendation q predicted by a system
and given in a reference set, respectively. The MAE is specified as

MAE =

vuut
1

|R
f

|
X

(q,v)2R
f

|v � v

0|

Since the MAE captures the error of the system-rating, the accuracy of the rating predictions
of the system is higher with a lower MAE. Its domain naturally coincides with that of the
corresponding rating (e.g., if the ratings range in the interval [0..1], the MAE does so, too).

2.4.3. Ranking Accuracy

Shani and Gunawardana [80] also show that there are several approaches for the evaluation of
the ranking accuracy (i.e., for comparing a given ranking for a set of recommendations to a
reference ranking). The so-called Normalized Distance-based Performance Measure (NDPM)
proposed by Yao [88] considers the ranking as a relation of preference values. Only di↵erences
in the ranking of recommendations proposed by the system evaluated influence its value.
Hence, the NDPM is also applicable for cases in which the reference ranking is only specified
w.r.t. groups of recommendations (i.e., there may be recommendations that are rated equally
and, consequently, also have the same ranking value).

NDPM is based on the Distance-based Performance Measure (DPM), which describes the
distance between the ranking determined by a system and the one given by a reference
set. The NDPM normalizes the DPM w.r.t. the worst-case (i.e., the case when all
recommendations given in the system-ranking are conversely ranked in the reference
ranking). Let C be the set of the pairs of recommendations that are ranked by the
system, and let C� ✓ C be the pairs of recommendations that are conversely ranked in
the reference set. Further, let Cu ✓ C denote the pairs of recommendations that are
ranked by the system but not in the reference set (i.e., they have the same rank in the
reference set). The NDPM is then defined as

NDPM =
2C� + C

u

2C

Note that the NDPM penalizes twice as much a pair of recommendations conversely ranked
by the system compared to one that is not ranked in the reference set. A NDPM value of 0
states that the system evaluated correctly determines every preference relation of the reference

10

2.5. Conclusion

ranking. The system is rated worse if it contains preference relations (i.e., di↵erences in
similarity values) contradicting the reference ranking. The NDPM of the worst-case is 1.

Since the calculation of the NDPM is performed regarding the topmost recommendations, it
may be the case that recommendations in the system ranking are not part of the reference
ranking. Similar to Ohsugi et al. [66], who add an additional rank for all those recommenda-
tions, we consider the ratings of recommendations that are not part of the reference ranking
to be 0 for the computation of the NDPM.

Moreover, note that the rating values are similarity values in this work. This is because the
recommendation is based solely on matching algorithms. The ranking, correspondingly, is the
order of recommendations determined by the similarity values.

2.5. Conclusion

This chapter covered the theoretical background of this work. First, relational algebra was
presented as a formalism to describe the semantics of queries independently of a specific
implementation language. Similarity search as a methodology for comparing objects was
described thereafter. In that context, index search represents an e�cient means for a textual
comparison based on equality of terms. For the calculation of a corresponding similarity value,
a formula based on TF-IDF (term frequency-inverse document frequency), used in the Apache
Lucene Project [1], can be applied. A second matching technique was introduced with schema
matching – which compares tree structures. There are several individual schema matching
approaches focusing on the comparison of di↵erent sorts of information. Also, methods for
combining them are proposed by Do and Rahm [29], which lead to a multitude of possibilities
for creating new, combined matchers. In the last section, measures for evaluating query rec-
ommendation and matching were described. The metrics presented cover the three properties
usually evaluated with recommender systems: overall usage, rating, and ranking accuracy;
thus, they enable a comprehensive evaluation of the quality of the query recommendation
system conceived in this thesis.

After having established the necessary preliminaries in this chapter, the query recommendation
problem is introduced both from an application perspective and formally, next.

11

3. Problem Analysis and Definition

In this chapter, the task to be solved is concretized. The first part, a presentation of the
environment of the matcher to be developed, the remix BI tool [58], is followed by a detailed
analysis of query matching. Requirements for the remix report matcher and formal definitions
of the important concepts are given in the remainder of this chapter.

3.1. Query Recommendation in remix

The environment for the query recommendation system is remix [58], a self-service BI tool
currently developed by SAP Research. remix is targeted at business users and supports them
in creating and sharing reports. The report creation is substantially facilitated by automatic
recommendations regarding useful data sources, adequate queries on the data, and reasonable
visualizations. Figure 3.1 shows a screenshot of remix with the elements necessary to build
reports (i.e., data sources and visualizations with queries) available in a parts bin on the
bottom. The available elements are mined from the remix report repository and can be easily
dragged into the workspace on the right. In this way, remix encourages collaboration and
sharing of reports, and motivates reuse.

Figure 3.1.: View of the remix workspace

According to the elements of a report distinguished in the user interface, the internal report
model of remix, shown in Figure 3.2, the so-called reportlet, discerns three aspects of reports:
the data, the query, and the visualization. The data aspect captures the details of the data
source. The query model describes the query on the data as connection between data source
and visualization (i.e., it specifies the data to be used, a computation on this data, and a

13

3. Problem Analysis and Definition

projection of the result of the computation). The visual aspect represents a table or chart
including various graphical features that visualizes the result of the query.

Figure 3.2.: The remix report model

In the context of report recommendation, this work will conceive a recommendation module
for queries, which calculates the similarity between arbitrary queries to provide the topmost
queries as recommendations. As part of this, the query aspect of the report model, which
has not been specified yet, has to be developed. The latter has to capture the important
elements of a query such that di↵erent matching techniques (e.g., machine learning as well
as a semantic comparison) can be applied. For the similarity calculation between reports,
in addition, distinctive features need to be extracted of the data and visualization model.
Nevertheless, the focus of this thesis is on query recommendation by means of query matching,
the main challenge to be overcome for calculating similarity of reports.

3.2. The Query Matching Problem

The main issues and challenges connected with query matching are introduced in this section.
To outline them, a query matching problem is given as example together with a rather
straightforward solution using common Information Retrieval techniques for text search. The
challenges of query matching are described, subsequently, in more detail.

3.2.1. An Example

This section gives an introductory example, Example 3.1, for the problem of query matching
together with a solution based on text search. Since state-of-the-art reporting tools apply
substring matching and keyword search to match queries [50], the outcome gives an idea of
their performance. Moreover, text search is the baseline approach used in the evaluation in
Chapter 6.

Example 3.1. Consider the SQL queries given below as description of an exemplary problem.
A query matching system then has to compare the query issued by a user, q

orig

, to the queries
stored in the system repository. As a solution, it has to deliver similarity values for the pairs

14

3.2. The Query Matching Problem

(q
orig

, q0),(qorig, q1), (qorig, q2), and (q
orig

, q3), respectively.

q

orig

:
SELECT name , s a l e s
FROM department
WHERE manager=’Chang ’

q0 :
SELECT name , s a l e s
FROM department
WHERE manager=’Chang ’

q1 :
SELECT name
FROM dept d JOIN manager m ON d . id=m. dept id
WHERE t o t a l s a l e s >50000

q2 :
SELECT ⇤
FROM department

q3 :
SELECT id
FROM manager
WHERE name LIKE ’Chong ’

In the following, the straightforward approach text search is used to solve the problem. For
that, the repository queries are indexed in complete, as text. After transforming the query of
the user correspondingly, it can be used as meta-query to query the index (i.e., it looks for
indexed queries that contain many of the tokens given in the meta-query). The meta-query
for q

orig

and the indexed query q1 are pictured below.

q

orig

:
TEXT:SELECT OR TEXT: name OR TEXT: s a l e s OR TEXT:FROM OR . . .

q1 :
TEXT:
SELECT name
FROM dept d JOIN manager m ON d . id=m. dept id
WHERE t o t a l s a l e s >50000

In the search process, the indexed queries are ranked according to their relevance, which can
be seen as similarity measure. The result of the text search, calculated using the common
TF-IDF measure, are the similarity values 1.0, 0.03, 0.14, and 0.05 for the pairs (q

orig

, q0),
(q

orig

, q1), (qorig, q2), and (q
orig

, q3), respectively. Since the query q0 in the repository exactly
matches q

orig

, the corresponding similarity value must be the greatest. The coarse-grain
comparison based on term equality is reflected by the values for the three queries q1, q2, and
q3, which only slightly di↵er. Note that the pair (q

orig

, q1) is rated the least similar, although
the queries have a very similar intend. On the other hand, the result of q

orig

is contained
in that of q2. Further, the similarity calculation based on TF-IDF might be inadequate for
queries in di↵erent query languages.

15

3. Problem Analysis and Definition

As a result of the textual comparison, the system could return the top three queries, q0, q2,
and q3, as recommendations.

The problem in Example 3.1 shows several of the di�culties of query matching introduced by
the complexity of the query syntax, its semantics, and the required computation of a similarity
value. Nevertheless, further challenges are introduced by system construction and integration,
which are described in the following.

3.2.2. Challenges in Query Matching

The above example shows that the task of matching two queries is non-trivial. Due to the
integration in remix and the peculiarities of query formulation, the matcher has to overcome
several challenges:

• The body of queries and auxiliary information can become very large

• The queries to be matched and the information given are often very heterogeneous

• The query structure is complex

Since remix is intended for a long-term application, the queries in the system and the available
auxiliary information considerably grow over time. Nevertheless, the processing must not
exceed the limits of what is acceptable regarding time and memory requirements. Therefore,
the complexity of the approach has to be kept within reasonable limits (e.g., schema matching
usually is of quadratic or even cubic complexity, which is not appropriate for the large-scale,
interactive setting of remix).

In remix, the query issued by the user is matched against the set of queries in the query
repository. At the same time the queries are considered as auxiliary information to support the
matching process. The varying quantity and quality of these queries has to be considered as
well as the fact that they often come from various tools (i.e., they are written in a specific query
language and format) and di↵erent domains (e.g., considering reports of di↵erent departments
of one company). For these reasons, the query matcher of remix has to use the available
queries e�ciently and should cope with queries in di↵erent query languages and domains.

Nevertheless, the complexity introduced by the possibilities of query formulation presents
a major challenge to be overcome in query matching. A query has to adhere to a specific
query language. Additionally, a certain set of result tuples can be retrieved with di↵erent
queries (e.g., with queries that overlap). Furthermore, there are di↵erent design possibilities
to describe semantically equivalent expressions. A matching algorithm, consequently, has to
apply techniques that resolve such syntactic and semantic inconsistencies.

The above challenges hint at the tasks to be solved by a successful query matching ap-
proach. Thus, they lead to the requirements for the query recommendation system, which are
given in the next section.

3.3. Requirement Definition

The integration into remix requires the query recommendation system to work independently
of a specific query language and domain. Additionally, it defines the acceptable runtime
and the available memory capacity. Next to these practical issues to be considered, the
challenges of query matching described in the previous section show further requirements

16

3.4. Problem Definition

– quality, robustness, and e�ciency – to be fulfilled by a successful query recommendation
system. Hence, a collection of criteria is given, in the following, which defines the requirements
for an adequate solution to the query recommendation problem in the context of the remix
architecture.

C1 Integration: The recommendation system should be integrated in the remix architecture
and make use of the Auto-Mapping Core (AMC) [68], a schema matching framework
developed by SAP Research.

C2 Interactivity: The interactive approach of remix requires the recommendation system to
proceed in an acceptable time. In concrete terms, this means that matching a query
against a repository should not exceed a logarithmic complexity in dependence of the
repository size.

C3 Interoperability: Due to the tool independence of remix, the developed system has to be
applicable to queries in arbitrary query languages.

C4 Quality: The recommendations provided need to be correct and complete w.r.t. the
queries given in the repository. The correctness requires a fine-grained comparison (i.e.,
including the syntactic, structural and semantic aspects of queries) and the completeness
a maximal reuse of queries.

C5 Independence: The query recommendation system has to be applicable domain-independent
and should produce results of similar quality in comparable use cases.

C6 Robustness: Due to the uncertainty, specificity, and scarcity of information given with
the stored queries, the system has to cope with false and ambiguous information.

C7 E�ciency: The result of the recommendation system should depend on both the amount
and quality of the input information. Thus, the quality of the result should reflect this
of the input and enhance with augmented input.

The above criteria can be assigned to the two groups of functional requirements (C1-C5)
and non-functional (C6, C7) requirements. Since the goal of this work is to develop a report
matcher for remix, the integration in the remix architecture (C1) is a major requirement. It is
only fulfilled satisfactorily, if the equally required interactivity (C2) and interoperability (C3)
criteria are met. Nevertheless, for the system to be useful, it has to produce results of good
quality (C4) in arbitrary environments (C5). Desirable qualities of the new recommendation
system are robustness (C6) and e�ciency (C7), which are not covered by the evaluation.

3.4. Problem Definition

After having analyzed the query recommendation and matching problem, this section provides
formal descriptions for the main concepts relevant in this context – it defines the query
matching and the query recommendation problem formally.

3.4.1. Query Matching

Definition 3.1 (Query Matching Problem). Given two queries q0 and q1, find a plausible
value between 0 and 1 for the similarity between the queries exploiting all the information
given by the queries themselves and auxiliary sources.

17

3. Problem Analysis and Definition

Algorithms which solve the query matching problem by computing similarity values for queries
are called (query) matchers. Moreover, a similarity value greater than 0 classifies two queries
to be similar to some degree.

The major challenge of query matching is to correctly reflect the similarity of queries in
the similarity value. The quality of a query matcher is determined by the correctness and
completeness of its results. The former requires pairs of queries with a similarity value greater
than 0 to be similar, the latter similar pairs of queries to have a similarity value greater than
0.

In this thesis, the similarity values of queries are calculated and used to rate them dur-
ing query recommendation, which is specified next.

3.4.2. Query Recommendation

Definition 3.2 (Recommendation). Queries that are similar are recommendations for each
other.

Definition 3.3 (Query Recommendation Problem). Given a query called original query, q
orig

,
and a set of queries Q as possible recommendations, return a sorted set R

f

✓ Q⇥ [0..1] of the
queries most similar to q

orig

together with the corresponding similarity values, which determine
the order. The similarity thereby can be based on the queries themselves as well as on external
sources.

The queries in R

f

are the recommendations finally presented to the user. In the following,
often, the set R ✓ Q ⇥ [0..1], |R|= |Q| is used to describe the processing. It contains all
possible recommendations and the corresponding similarity values. The number of final rec-
ommendations to be returned (i.e., |R

f

|) is set through the size-parameter s. R
f

is obtained
from R by selecting the first s pairs in R.

Note that both R and R

f

are assumed to be in descending order. Further, they are in-
dexed (i.e., R = {(q0, v0), (q1, v1), .., (q|R|�1, v|R|�1)}), and R(i), i 2 [0..|R|�1], denotes the
pair (q

i

, v

i

) 2 R at index i.

In contrast to the large body of works on recommender systems, which concentrate on
collaborative approaches, this work follows a content-based approach of query recommenda-
tion (i.e., the recommendation is based primarily on the information given with the queries
themselves). This is also emphasized by the fact that the recommendations are augmented
with similarity values – recommendations in recommender systems are usually annotated with
so-called predictions or ratings.

The challenges of query recommendation are three-fold: obviously, the recommendations
finally presented to the user have to be recommendations for the query of the user. In addition,
the corresponding similarity values have to be correct, and the ranking of the recommendations
has to make sense. Since the definition above requires the similarity values to be of a specific
interval, they serve to determine the ranking, in the following.

This work solves the query recommendation problem in the way induced by the above
definition, through calculating similarity values for the queries and proposing the most similar
queries as recommendations.

18

3.5. Conclusion

3.5. Conclusion

This chapter described the query recommendation and matching problem in detail. It, first,
presented the reporting tool remix as the environment of the query recommendation system
to be developed. Thereafter, an example demonstrated the task to be solved and outlined
the challenges connected with query matching. In particular, the amount of information, its
heterogeneity, and the complexity of the queries have to be overcome. Based on these consider-
ations, the requirements for the query recommendation system were specified. Altogether, the
query recommendation system has to be integrated in remix and provide recommendations of
good quality. In the end of the chapter, the problems of query recommendation and matching
were defined formally.

After the detailed analysis of the problem to be solved and its specification, related work
in query recommendation and matching is reviewed in the next chapter. Especially, the
requirement definition presented above serves to demonstrate the features still missing with
existing query recommendation approaches.

19

4. Related Work

This chapter presents related work in the fields of query recommendation and matching.
The first part introduces existing approaches of query recommendation, gives an overview of
query matching in the area of query optimization and hints at further applications of query
matching. The second part of this chapter highlights techniques in two other domains of
matching, similarity search and schema matching, which can also be applied for matching
queries. Finally, a classification of query matching approaches integrating the existing works
and providing the basis for a detailed comparison is derived.

4.1. Query Recommendation and Matching

The central topic of this thesis is query matching for query recommendation. Nevertheless,
query matching is performed with very di↵erent goals, too. This section first presents the
works closest to this study, which target query recommendation as add-ons for Database
Management Systems (DBMS). Then, the origins of query matching, which lie in the fields of
data integration and optimization (i.e., in the internals of DBMS) are described together with
current works in these areas. Lastly, other applications of query matching are outlined.

4.1.1. Query Recommendation

Providing automatic recommendations of similar queries to a user who has issued a query
is a very recent area of research. DBMS, generally, do not o↵er further functionality in this
direction; however, they often maintain query repositories [8, 14] or query logs [4, 5, 52]
where the user can manually search for relevant queries. Such repositories are shortly covered
in the beginning of this section. Recommender systems [16, 22, 37, 38, 49, 77, 78], which
provide query recommendations after a query has been issued by a user, are studied thereafter.
Similarly, query completion mechanisms [47, 51, 87] are described, which propose completions
for a partial query formulated by a user.

Query Repository

A stored collection of queries that is accessible to the user presents a very simple query
repository (i.e., without further infrastructure functionality) and can be seen as a very basic
form of query recommendation. Current DBMS usually maintain such a repository for one of
two reasons: either to provide a selection of well-defined query examples [8, 14] often annotated
with natural language descriptions or to store the querying history in a so-called query log
[4, 5]. However, both approaches do not represent very elaborate query recommendation
techniques. Although providing a selection of high-quality queries, the whole of example
queries can never fit to the query a user is looking for. Query logs, similarly, do not allow
for pre-selections w.r.t. a query a user is looking for; they usually target physical tuning.
Although the advantages of an enhanced infrastructure for query repositories were already
described by Khoussainova et al. [50], they have not been adopted, yet.

In [52], Khoussainova et al. present a query log with enhanced browsing functionality:

21

4. Related Work

The user has access to all queries issued in the past, which are organized session-based1,
and can search for relevant sessions with keywords identifying query parts (e.g., employee
AND departments). But the focus of Khoussainova et al. is on the positive impact of the
session-based browsing functionality itself, the identification of relevant queries in the sessions
is based on rather low-level matching techniques, the text search and ranking capabilities
provided by the underlying DBMS.

Recommender Systems

In their goal of providing recommendations to the user after he has issued a query, recom-
mender systems are very close to this work. However, these systems are, per definition, based
on a collaborative approach2. The information contained in the queries themselves is only
used marginally to match them and only by a subset, the so-called content-based recom-
mender systems. Next to relational systems [16, 22, 49], there are several multidimensional
recommender systems [37, 38, 48, 77, 78]. A good overview of the state of the art is provided
by Marcel et al. [60, 61].

With YMAL, Stefanidis et al. [49] propose three techniques for the recommendation of
query results called current state, history, and external sources. The three approaches concen-
trate on di↵erent kinds of information available in a DBMS – the query issued by the user and
the database, the query log, and arbitrary data sources, respectively – but only with regard
to query results. Next to a result-based approach, the QueRIE system [16, 22] integrates a
fragment-based computation scheme for query similarity. Its goal is to determine queries in
the query log that fit into the session of the current user. After applying relaxation methods
following Koudas et al. [53], the log queries are split into fragments as illustrated in Table
4.1. Then, fragments that often occur together in a session are defined as being similar. In
essence, the final recommendation includes those queries from the query log that contain
many fragments from the current user session.

Fragment name Start keyword End keyword

Attribute string SELECT FROM
Relation string FROM WHERE, GROUP BY, ORDER BY, end of query
Where string WHERE GROUP BY, ORDER BY, end of query
Group By string GROUP BY ORDER BY, HAVING, end of query
Having string HAVING ORDER BY, end of query

Table 4.1.: Fragment definition in the QueRIE system, adapted according to [17]

Among the recommender systems for multidimensional databases [37, 38, 48, 77, 78], only few
[37, 38, 77, 78] compare the current query to previous queries. Furthermore, this comparison
is only syntactical. Sapia [77, 78] considers properties of the query as a whole (i.e., result
measures, selection and result levels) and groups queries with common fragments. Likewise,

1In this context, a session is usually represented by a set of queries in a DBMS issued in a specific interval of
time by one user.

2In the collaborative recommender systems, the recommendation depends on information about the behavior
of other users and on preferences of the current user [76].

22

4.1. Query Recommendation and Matching

Marcel et al. [37, 38] resolve similar queries by comparing the references to the OLAP cube3,
which are defined through the selection and projection of the queries. W.r.t. these sets of
references, the similarity value for two queries is computed using the Haussdor↵ distance4. In
[36], Marcel et al. propose to use the Hamming distance5 to compare two single references.

Although the recommender systems presented match queries, the techniques suggested are
basic methods of text comparison. Since their focus is on comparing queries with a session
in a DBMS (i.e., the over-all user behavior), the query comparison itself only constitutes a
rather small portion of the computation and is only based on the information available in a
DBMS. Another important issue is raised by Marcel et al. [61], who state that the quality of
the recommendations needs to be assessed based on real users and cases, which has not been
done, to date.

Query Completion

Another service on top of DBMS is provided by query completion approaches that aim at
completing partial queries. Although several commercial systems provide auto completion
regarding tables, columns, and functions [3, 6], only few and rather recent works [47, 51, 87]
cover a more elaborate completion.

Already Ioannidis and Viglas [47] emphasize the need for an internal representation of queries
and describe a special parse tree as a normalized query representation. They concentrate on
the use case that a complete first query is incrementally refined by a user. The refinements may
be simple phrases, which are automatically adapted to the context of the original query. The
so-called conversational querying happens interactively and also previous, stored queries can
be included in the context search performed by the system. The context search is one major
contribution of the work. However, the proposed algorithms consider only select-project-join
(SPJ) queries (i.e., no queries with aggregations and no nested queries) and for the final
completion only one query is used – the information contained in the remaining queries is
neglected. Yang et al. [87] automatically complete a query with join operations (i.e., join
tables and join conditions), given start and end attributes. The paths of joins are found
by mining possibilities from the query log; for that, a greedy algorithm is applied, which
maximizes a predefined quality measure (e.g., the share of queries in the log that contain the
selected path). In contrast to Yang et al., who only resolve join relations, Khoussainova et al.
[51] recently presented an interactive query completion method, which takes arbitrary parts
of the query (e.g., tables, selection conditions, and aggregates), so-called query snippets, into
consideration. By keeping the queries from the query log in a directed acyclic graph (DAG),
similar to the example shown in Fig 4.1, which merges common query parts (i.e., the nodes
contain sets of snippets and a query is represented by exactly one node), valid and probable
completions can be recommended to the user.

3In Online Analytical Processing (OLAP), the data model considered is often multidimensional, and can,
then, be represented as a cube. This cube is precomputed as view of the database, and queries usually
reference that cube instead of directly addressing the database tables [9].

4The Haussdor↵ distance is a measure from set-theory. It calculates the distance between two sets based on
the distance of the corresponding elements. In essence, two such sets are close, if the pair-wise distances
between the elements of the two sets are small [46].

5The Hamming distance is a string metric. It compares two strings by adding up the di↵erences between
symbols at equal positions in the strings. It is defined as d

hamming

(ha1..ani, hb1..bni) =
P

n

i=1 equals(ai, bi),
with function equals being 1 if a

i

and b

i

are the same and 0 otherwise [44].

23

4. Related Work

Figure 4.1.: The queries of a query log, shown below left, coalesced in a DAG by merging common
query parts; taken from [51]

With the suggestion of graphs for query representation, the approaches for query completion
explicitly take into account structural inconsistencies between queries. However, the graphs
will be considerably greater in size and more complex, if queries of arbitrary complexity and
data sources are considered (e.g., in a context more general than one DBMS). Therefore, the
matching methods proposed by [47, 51, 87] need to be adapted in a more complex setting.

4.1.2. Query Optimization

Computing the similarity between queries is a major challenge in query optimization; pri-
marily, to make use of materialized views [43, 89]. The field of multi query optimization
(MQO) [33, 74, 79, 86, 91] coalesces multiple similar queries to minimize the database request.
Furthermore, similarities between queries are determined to reuse existing query execution
plans. This section gives an overview of query matching in these three areas.

In line with the practical relevance of the query matching problem for query optimiza-
tion, several works have been proposed to solve it on the theoretical level. Early research
[42, 72] as well as recent work [24, 63] focuses on the algorithmic aspect of the problem,
where the goal is to decide about the relationship between queries. Since the algorithms
published in these papers are primarily exhaustive (i.e., consequently, they are of exponential
complexity) and usually only consider special cases of the problem, they are of minor relevance
for matching complex queries.

Materialized Views

Materialized views (i.e., precomputed queries) are commonly used to optimize query processing.
For that, incoming queries, targeting the database, have to be rewritten to include the views.
Although many works consider this rewriting – an exhaustive survey is provided by Halevy
[43] –, their impact on query matching is only minor. This is because most approaches are
cost-based or cover only a subset of queries; as a consequence, the algorithms proposed are too
simple and not suited for a more complex setting. Only Zaharioudakis et al. [89] describe an
approach that works for nested queries and queries with aggregations, too. They represent the
queries as graphs, which are matched by a custom algorithm supported by a list of patterns.
With the need of a fine-granular query representation together with matching algorithms that

24

4.1. Query Recommendation and Matching

work in a piece-by-piece fashion on the one hand (i.e., they do not match the queries as a whole,
but perform a fine-grained comparison based on the query in parts, the individual nodes in
the graph), and translation (i.e., normalization) algorithms on the other hand, Zaharioudakis
et al. [89] explicitly state the extensions that are necessary to match complex queries.

A special kind of materialized views is created by the so-called semantic caching. It exploits
the semantic information (e.g., the selection and projection) present in query specifications
to organize and manage the cache – usually a client cache in distributed applications – dy-
namically. Thus, the focus of existing work is more on e�cient query processing and cache
management (e.g., cache replacement policies) than on representation issues. Specifically, the
approaches usually treat only a subset of queries [26, 62, 71, 73, 83] and are often based on
Deshpande et al.[27], who describe a fix cache structure according to which the cached data is
organized.

Multi Query Optimization

Another approach of query optimization is multi query optimization (MQO), which aims
at identifying common subexpressions in workloads of related queries to execute common
operations only once. Early works in MQO [33, 79] only regard a subset of queries and propose
exhaustive algorithms that do not satisfy the e�ciency requirements of the practice. For that
reason, more recent studies propose to use greedy algorithms based on heuristics to optimize
the search [74, 86, 91].

Roy et al. [74] extend an optimizer to detect common subexpressions and cases of sub-
sumption, but concentrate on the cost-based selection of an execution plan. Zhou et al.
[86, 91] abstract the original queries to certain properties of the queries (e.g., a boolean
value identifying a grouping expression together with all source table names as in [91]). The
abstraction enables a fast filtering of queries that have no common subexpressions. The
common expressions are then merged and an execution plan is created. With the reduction
of queries on specific properties, Zhou et al. propose an e�cient means to filter out queries
that do not have common subexpressions. For query optimization, which requires equality
regarding subexpressions, this filter is appropriate. For query recommendation, however, total
equality is not necessary. Hence, the filter would have to include further properties to enable
a more fine-grained decision.

Query Execution Plan Selection

Also the selection of query execution plans can be optimized by matching queries – either to
reuse existing execution plans (i.e., plans that were created for similar queries) or to execute
similar queries together, which is related to MQO. Research in this field goes in the direction
of query clustering [35, 40].

Gopal and Ramesh [40], however, describe an exhaustive clustering algorithm for SPJ queries,
which is cost-driven. Also Ghosh et al. [35] target the clustering of SPJ queries. For the
cluster assignment, they use a classifier based on decision trees6. The classification depends
on several properties of the query (e.g., the number of join predicates in which a particular
table is involved), which are more specific than those mentioned before. However, most of

6Decision tree learning is a machine learning technique that classifies input based on a number of characteristics.
Thereby, the classification depends on a tree-model learnt in advance [55].

25

4. Related Work

the properties are based on physical aspects of the data source, information that must be
provided in addition to the queries for the matching to work.

4.1.3. Others

Apart from query recommendation and optimization, di↵erent kinds of queries (e.g., simple
phrases, natural language sentences, or database queries) are completed, compared, and
translated in several areas. Examples are fields such as phrase completion in keyword search
[56], data integration [43], and natural language interfaces to databases [39, 54, 65]. Since the
focus of those areas is not on determining similarity of arbitrary, complex database queries,
they are not considered further in this work.

4.2. Matching Techniques

The query matching approaches described above all focus on certain aspects of the queries
by abstracting from others. A more general consideration of queries also makes it possible
to apply methods that have been elaborated and proven over time. This section presents
two rather general matching techniques, similarity search and schema matching, that can be
instantiated to query matching.

4.2.1. Similarity Search

As mentioned above, query recommendation can be seen as search problem where keyword
search is not appropriate. However, a di↵erent kind of search, similarity search can be applied
instead. In the context of query matching, however, only few works consider similarity
search [23, 35, 86]; in addition, they apply machine learning [23, 35] or a very coarse-grained
comparison [86]. But the application of machine learning requires an adequate set of samples
to learn from. Furthermore, the dimensions of comparison considered in those works are not
apt for a general comparison of queries since they reduce queries to very few properties. The
finding of appropriate dimensions of comparison, which are able to capture the syntactic and
semantic information of a query, as well as the development of a suitable similarity measure
are important issues to be addressed. To the best of our knowledge, these questions have not
been studied in more detail, to date.

4.2.2. Schema Matching

Since a query can be represented by its parse tree, query matching can be seen as an instance
of the more general class of schema matching. Schema matching is an important research
area in the database community, which contains a large body of work on various matching
approaches. Schema matching systems apply linguistic methods, structural analysis, domain
knowledge and past mappings in order to create a mapping between to schemas. There are
several matching systems [19], today, that could be applied for matching queries, too. However,
for query matching the existing systems would have to be adapted: the missing full automation
of the matchers, which is caused by a lack in preciseness and completeness, and their complete
ignorance of the semantics of the query language would otherwise lead to unsatisfactory results.

Di↵ering, amongst others, in their goals, application domains, and methodologies, the query
matching approaches presented in this section are largely heterogeneous. Therefore, their most
important commonalities and di↵erences should be pointed out in a comparative discussion.

26

4.3. Discussion

4.3. Discussion

A discussion of related work coming from di↵erent domains benefits from a common vocabulary.
This section, first, develops such a vocabulary as a classification for query matching approaches,
which does not exist, to date. Based on this classification, the query matching approaches
presented in the previous section are compared, afterwards.

4.3.1. Classification

Generally accepted classifications for schema and ontology matching approaches are given in
[32, 70]. Such a uniform vocabulary and organization represent the basis for a comprehensive
discussion of di↵erent matching techniques. For query matching, however, such a common
foundation does not exist, yet. Based on existing work in matching [32, 70], the granularity of
the approach and the information included for matching present the two central dimensions
to classify query matching approaches in this study. W.r.t. the subjects to be matched in
this thesis, queries, however, the classification should be adapted on the lower-levels. This
section proposes a classification for query matching approaches, which is illustrated in Figure
4.2. Further, the classification proposed is considered in the context of the closest existing
classifications [32, 50, 70].

Figure 4.2.: Criteria for classifying query matching approaches

Granularity A matching algorithm processes the queries with a certain granularity consid-
ering either the complete query (e.g., with substring matching and keyword search) or
breaking them into query parts (e.g., by organizing individual terms in a graph). In
the second case, with element and element-context, a further distinction can be made
depending on whether all elements are considered individually or in the context of
the structure (e.g., elements appearing together in the structure may be matched in
combinations).

Information Matching approaches can be distinguished by the information they use for
matching. This information may come from the queries themselves or from external

27

4. Related Work

sources. In the first case, purely syntactic approaches should be discerned from semantic
techniques that include query semantics. In contrast to a simple syntactic consideration
of queries, a semantic approach connects the syntactic elements of a query language with
certain semantics (i.e., it interprets the queries). Matching based on external information
contains various approaches, which can include meta-data, the data sources, the query
results, or a visualization as meta information about a query. Note that this are exactly
the elements that make up a report. Hence, report matching in this study will focus on
the queries and may include further information contained in the reports as external
information. Apart from reports, external information sources are divided into other
queries (e.g., the use of a query log), the major information source for the so-called
reuse-based matching [28], and other auxiliary sources (e.g., dictionaries or thesauri).

Rahm and Bernstein [70] introduce the basic classification for schema matching approaches.
They explicitly mention possibilities to combine individual match approaches and additionally
discern instance/contents-based techniques. W.r.t. query matching, such instances do not
exist. However, query results and other kinds of external information may be considered.
Because of the textual nature of queries, the above classification contains the granularity of
considering queries in complete next to the element and element-context-based approaches
(i.e., element and structure-level in [70]). Finally, the use of a specific query language auto-
matically constrains query syntax and makes query semantics more concrete, which is why
the constrained-based criterion proposed by Rahm and Bernstein is called semantic in this
work. Euzenat and Shvaiko [32] extend the classification of Rahm and Bernstein by explicitly
including a semantic dimension in their classification of ontology matching approaches, which
makes sense since the nature of ontologies supports reasoning.

In a context similar to query matching, namely meta-querying (i.e., the search for queries),
Khoussainova et al. [50] discern three di↵erent kinds of information about queries, query-by-
parse-tree, query-by-data, and query-by-feature; however, their classification does not provide
clear dimensions and is partly ambiguous. Query-by-parse-tree, targets at structural properties
of the complete query (e.g., number of joins in the query). Query-by-data designates the
search for queries by setting conditions on the results of the queries. Finally, the query-
by-feature paradigm collects features of a query, which can be syntactic (e.g., the relation
names in the query), semantic (e.g., cardinality of results or samples), or meta-data. Hence,
query-by-parse-tree overlaps with the syntactic query-by-feature approach for both regard the
query syntax. Although the former focuses on predefined language elements whereas the latter
considers arbitrary values, the commonality of the approaches should be stated more clearly.
Similarly, the semantic query-by-feature category includes query-by-data because it covers
both statistics and samples. Note that Khoussainova et al. call the result-based approach
semantic, which is common in related work, because the query semantics are determined by
the result. In this study, the term semantic is usually used to hint at the interpretation of
expressions in the context of the representation language, in contrast to a purely syntactic
consideration.

In summary, the classification given in this section supports the categorization of exist-
ing query matching approaches and is, at the same time, open to integrate new techniques;
especially, the granularity criterion puts no restrictions on the structure and the dimension
of external information is open to include various sources of information. Moreover, the
possibilities for query matching given with the above criteria do not exclude each other. As a
consequence, methods can also combine di↵erent concepts of one of the two dimensions.

28

4.3. Discussion

Approach Complete Query Element Element-Context

Query Repository [4, 5, 8, 14,
52]

x

Recommender Systems [16, 22,
37, 38, 48, 49, 77, 78]

x x x

Query Completion [47, 51, 87] x
MVS [89] x
MQO [33, 74, 79, 86, 91] x
EPS [35, 40] x

Approach Syntax Semantics Queries Auxiliary Meta

Query Repository x x x
Recommender Systems x x x
Query Completion x x x x
MVS x x x
MQO x x
EPS x x

Table 4.2.: Classification of existing query matching approaches

4.3.2. Comparison

A general comparison of existing query matching approaches w.r.t. their quality is hard. This
is because they have very di↵erent goals, which often depend on specific environments (e.g.,
physical requirements). Nevertheless, a conceptual comparison is possible and presented in
this section; it includes the query matching approaches in the areas of query recommendation
and query optimization, which were described above. The classification criteria developed in
the previous section thereby prove themselves by emphasizing important commonalities and
di↵erences between the approaches.

Table 4.2 classifies the approaches that target query recommendation (i.e., query repositories,
recommender systems, and query completion systems) and those that target query optimiza-
tion (i.e., approaches applying materialized views (MVS), MQO, or query execution plan
selection (EPS)) described above w.r.t. the classification developed in Section 4.3.1.

Query repositories and query logs store the queries as they are, probably augmented with
meta-information. If available, infrastructure functionality allows simple text search (i.e., it
considers the query syntax) including the meta-information as external source. The various
recommender systems consider either the query in complete or separate fragments (i.e., query
parts). Furthermore, they include the queries from the current and earlier sessions to decide
about query similarity. Often, other kinds of auxiliary information (e.g., a user profile or
expectation functions) are used, in addition, as it is shown in the survey of Marcel and Negre
[61]. All query completion systems considered maintain an internal graph representation
(i.e., they regard the di↵erent parts of the query in their context) based on the query syntax.
Sometimes, query semantics are included (e.g., in case the graph representation is normalized).
To complete a query, they use stored queries as information sources and information related
to specific sessions.

29

4. Related Work

The only relevant approach utilizing materialized views is provided by Zaharioudakis et
al. [89], who consider the parts of the query in their context by translating the query in an
internal graph. The algorithm proposed for matching the graphs (i.e., the query syntax) com-
prises query semantics by making use of predefined patterns, an external information source.
Also, the MQO methodologies model the queries as graphs. The simple syntactic comparison
is often augmented with semantic considerations (e.g., by applying normalization methods)
to come to a more fine-grained decision regarding the relation between the queries to merge.
Lastly, the described methods for selecting query execution plans provide an example for
approaches that consider several sources of information. Next to the syntactic properties of a
query, they consider meta information related to the query (e.g., properties of the data sources).

The comparison shows that the consideration of queries and the information used for matching
varies with the di↵erent applications. All approaches make use of the syntactic information
provided by the queries themselves. Often, query semantics are considered additionally – either
by using a normalized representation or by making use of predefined patterns. Next to the
query information, most approaches use external information for matching. However, contrary
to the combination of information sources, no approach regards the queries at di↵erent kinds
of granularity, in parallel.

4.4. Conclusion

Altogether, the descriptions and the comparison give a detailed overview of the di↵erent
approaches of query recommendation and matching and show that the requirements of query
recommendation for remix (see Chapter 3) are only partially supported by current query
matching approaches. Moreover, the evaluations of query recommendation systems have to
be regarded critically. Therefore, the fulfillment of the requirements and the evaluations are
considered specifically, in this section.

Requirements In general, the requirements of remix are di↵erent from those of existing
systems. The complexity of most query completion approaches, a result of their detailed
processing of the queries, would certainly lead to problems with interactivity in a large-
scale setting. Similarly, schema matchers have not been designed to match such amounts
of queries. The query matchers of recommender systems, which usually regard the queries
as text, will struggle to meet the interoperability criterion – at least without a drop
in quality. This is because di↵erent query languages are not matched comprehensively.
The lack of quality as a result of using text comparison is shown in the evaluation in
Chapter 6, which includes text search as baseline approach. Also, most of the query
completion systems and query optimization approaches were developed as add-ons for
one database system. Obviously, adaptations would be necessary to apply them in a
more heterogeneous environment. The required quality of the approaches and also the
domain independence needs to be asserted regarding their evaluations.

Evaluation Evaluations in the field of query optimization are usually executions of public
benchmarks and target goals rather di↵erent from the quality of the internal query
matching (e.g., DBMS related issues, especially, the cost and time of query execution).
Even fine-grained matching approaches as [89] are not evaluated regarding the precision
and completeness of the matching. Marcel and Negre [61] explicitly mention the
shortcomings of evaluations in the area of recommender systems; especially, they point
out the lack of real-world data (i.e., queries issued by general database users and

30

4.4. Conclusion

user ratings stating the usefulness of recommendations). The latter indicates that
common data sets based on real-world data are needed to conduct comparable and
empirical evaluations. Although Ioannidis and Viglas [47] conduct a study with real
users, the experimental results have to be regarded critical since the queries used in the
study are more similar to learning examples than to more complex real-world instances.
Khoussainova et al. [51] conduct an evaluation of their query completion approach and
make use of real-world data sets. However, they do not evaluate the recommendation of
complete queries or query matching. Thus, they do not include reference data explicitly
stating similarity or usefulness values for the queries, which were determined by real
users.

Based on several of the approaches presented above, a query recommendation system is con-
ceived in the next chapter. Thereby, the requirements not fulfilled by the existing systems are
taken into consideration, in particular. The issues concerning the evaluation are subsequently
addressed in Chapter 6, which presents an empirical evaluation of the query recommendation
system based on real-world data.

31

5. Query Matching – A Combined
Approach

The requirement definition in Chapter 3 shows that a query recommendation system for remix
must provide several of the features existing systems support. For that reason, it has to follow
a broader approach and integrate several of the traditional techniques.

This chapter presents a new approach for query recommendation: content-based query
recommendation using a combination of two di↵erent matching techniques – similarity search
and schema matching. The combination of these two, rather di↵erent approaches is chosen for
two reasons. On the one hand, the task description includes the application and evaluation of
schema matching, which is, however, too complex to provide recommendations interactively.
On the other hand, the classification presented in Chapter 4 hints at a variety of possibilities
of matching queries content-based. For exploiting most of the given information, the consider-
ation of several approaches in parallel should be beneficial.

On account of this, methods based on the two matching techniques similarity search and
schema matching are adapted, extended, and integrated into a combined query matcher, which
is presented next. In the sequel, the di↵erent matching approaches are described in more
detail.

5.1. Query Recommendation Approach

This section describes a conceptual framework for query recommendation based on a com-
bined approach for query matching. Figure 5.1 gives an overview of the procedure of query
recommendation. Its input consists of the original query, q

orig

. The system itself contains the
set of possible recommendations, Q, in a query repository. The output is an ordered subset of
the best recommendations, R

f

. After a pre-processing step, the main processing is performed
by the Combined Matcher, a matching framework.

Figure 5.1.: The query recommendation procedure

33

5. Query Matching – A Combined Approach

The pre-processing has the goal to prepare and facilitate the matching phase. In order to
enable a comparison, it parses queries in di↵erent source formats and languages and translates
them into a common representation based on relational algebra. The latter is very similar to
the abstract syntax tree of SQL.

The Combined Matcher, which is executed second, compares the original query to every
possible recommendation and computes a similarity value based on the degree of their similar-
ity. For that, it proceeds in two phases applying two di↵erent matching algorithms to the
query pairs to be matched: the Feature and the Schema Matcher. These matchers are based
on methods from similarity search and schema matching, respectively.

Each matcher recomputes the similarity value for the possible recommendations and may
narrow down the set of possible recommendations by sorting out poor matches (i.e., recom-
mendations that have a small similarity value w.r.t. the original query). After the application
of the matching framework, the best matches are finally returned as recommendations.

The presentation of the global picture in this section is followed, next, by a detailed de-
scription of the Combined Matcher.

5.2. The Combined Matcher

As outlined in the recommendation procedure, the Combined Matcher executes submatchers
of two kinds, similarity search and schema matching. In theory, the matchers can be applied
in arbitrary order; however, in this framework every kind of matcher is applied at a particu-
lar time to fulfill a specific purpose and to overcome a particular issue of query recommendation.

The Feature Matcher based on similarity search serves as a first filtering component. This
filtering is essential to guarantee e�ciency if the set of possible recommendations is very large.
Then, the Schema Matcher performs schema matching for a more fine-grained comparison.
The schema matching helps to reflect more subtle the di↵erences between di↵erent queries in
the similarity value. Hence, the order of the final recommendations is determined.

For both matchers, concrete matching algorithms are conceived and adapted in this work.
Their processing is detailed in the following. It always consists of three basic steps: the
extraction of the information necessary for matching (i.e., the query content), the actual
comparison, and the calculation of the similarity value. In the remainder of the section, the
application of aggregation and selection strategies to enhance the result are described. To
demonstrate the di↵erent concepts, the recommendation task described in Example 5.1 serves
as a running example, throughout this section.

Example 5.1. As a running example, the recommendation task described below, which
looks for recommendations for query q

orig

, is to be solved by the recommendation procedure.
Thereby, the SQL queries pictured below, which were already involved in the introductory
Example 3.1, again, serve to demonstrate the matching algorithms and their influence on the
final recommendation.

q

orig

:
SELECT name , s a l e s
FROM department
WHERE manager=’Chang ’

34

5.2. The Combined Matcher

Q = {
q0 :
SELECT name , s a l e s
FROM department
WHERE manager=’Chang ’

q1 :
SELECT name
FROM dept d JOIN manager m ON d . id=m. dept id
WHERE t o t a l s a l e s >50000

q2 :
SELECT ⇤
FROM department

q3 :
SELECT id
FROM manager
WHERE name LIKE ’Chong ’
}

5.2.1. The Feature Matcher

Figure 5.1 shows that similarity search is applied first in the query recommendation methodol-
ogy to reduce the search space of possible recommendations. At the same time, however, this
filtering has to be based on a sound comparison to not filter out similar queries. This section
describes how similarity values can be calculated e�ciently for queries by using similarity
search. Thereby, the abstract processing of the search is tailored to queries as subjects.

By considering the queries to be matched as points in a metric space, the problem of matching
two queries is reduced to the comparison of arbitrary characteristics of the queries. In this
case, the dimensions of the space are the kinds of characteristics, and the considered charac-
teristics, grouped together in a vector, represent the query. The similarity of the queries then
is the distance of the vectors, which can be computed using a multidimensional distance metric.

This section describes the Feature Matcher, which is based on similarity search. It in-
troduces features, the characteristics of the queries that are compared. Since equality is used
as basic comparison criterion (i.e., instead of a more complex comparison based on the type
of the characteristics), an index can be used for the actual comparison, which is described
thereafter. Finally, the similarity calculation applied on the outcome of the comparison is
specified.

Definition and Extraction of Features

Globally available characteristics of queries enable a straightforward query comparison. As
the query matching classification of Chapter 4 indicates, the abstraction of the textual queries
onto certain characteristic properties can concentrate on di↵erent kinds of information (i.e.,
syntactic, semantic, or external properties). Usually, it is not appropriate and causes too
much overhead to attach information in specific, external formats as the whole data source
queried or the query results. The e�cient use in a matching system, hence, requires the

35

5. Query Matching – A Combined Approach

properties to be textually recordable as so-called features1. There are various possibilities for
the information recorded in features. However, w.r.t. their application for query matching
based on similarity search, they di↵er in their usefulness.

Syntactic properties Syntactic properties (e.g., the query language, the length of the query,
or the language used) are extracted from the query as it is issued in a database. Hence,
they are easy to extract and naturally available for every query. But, they are not very
expressive as comparison criterion and may even hint to a wrong result (e.g., although
di↵ering in their length, two queries may be similar or equal in what they deliver as
result).

Semantic properties Semantic properties (e.g., the names of the data sources queried or
the count of selection conditions) are based on the interpretation of the query language.
A comparison based on semantic properties is closer to sound reasoning, because it
reflects the actual intend of a query. Thus, it is necessary to capture the information
actually contained in a query and to provide interoperability regarding di↵erent query
languages.

External properties External properties (e.g., data about the user session or properties of
the result set) describe the environment of the query. This kind of properties is obviously
very heterogeneous and cannot be extracted with a common procedure. Furthermore, it
is not available for every query and the queries di↵er in the external information they
have attached. Thus, they do not always allow the comparison of two queries and a
thorough comparison cannot be based on external properties exclusively.

For the reasons described above, this thesis concentrates on features reflecting semantic
properties. Below, Table 5.1 gives an overview of all the features considered. The large number
of features has been chosen in order to enable a comparison as detailed as possible.

Feature Description

REL NAMES The names of the relations that are queried
PRO ATTRS The attributes in the projection

SEL ATTRS The attributes that occur in scope of a selection
SEL COMP OPS Comparison operations that occur in scope of a selection
SEL SQL COND OPS SQL-specific condition operations (e.g., ’BETWEEN’) that

occur in scope of a selection
SEL PRED OPS Predicates (i.e., ’and’ or ’or’) that occur in scope of a selection
SEL ARITHM OPS Arithmetic operations that occur in scope of a selection
SEL AGG OPS Aggregation operations that occur in scope of a selection

(e.g., in an SQL ’HAVING’ clause)

REN RELATION NAMES The names of the relations that are renamed
REN ATTRS The attributes that are renamed

EXT ATTRS The attributes that are used for computing new attributes
EXT NEW ATTRS The names of computed attributes
EXT COMP OPS Comparison operations used for computing new attributes,

the so-called extension
EXT SQL COND OPS SQL-specific condition operations that occur in scope of an

extension

1Note that if a concrete query is considered, the term feature usually includes the actual value of the feature
in the query.

36

5.2. The Combined Matcher

Feature Description

EXT PRED OPS Predicates that occur in scope of an extension
EXT ARITHM OPS Arithmetic operations that occur in scope of an extension

SORT ATTRS The attributes that are used for sorting the result

GRO GRO ATTRS The attributes for which a grouping is performed
GRO ATTRS The attributes that occur in scope of a grouping
GRO NEW ATTRS The names of the new attributes resulting from a grouping
GRO ARITHM OPS Arithmetic operations that occur in scope of a grouping
GRO AGG OPS Aggregation operations that occur in scope of a grouping

JOIN ATTRS The attributes that are used in a join condition
JOIN OPS The join operations in the query
JOIN COMP OPS Comparison operations that occur in scope of a join operation
JOIN SQL COND OPS SQL-specific condition operations that occur in scope of a join

operation
JOIN PRED OPS Predicates that occur in scope of a join operation
JOIN ARITHM OPS Arithmetic operations that occur in scope of a join operation

SET OPS The set operations that occur in the query
REN COUNT Count of rename operations
JOIN COUNT Count of join operations
SET COUNT Count of set operations
FUN The functions that are used in the query
FUN ATTRS The attributes that are used as function parameters
CASE COUNT Count of condition statements (e.g., SQL ’CASE-WHEN’ or

’IF-THEN-ELSE’ statements)
SUB COUNT Count of subqueries
VALUES The values that occur in the query

Table 5.1.: The query-features considered in this work

As mentioned earlier, the extraction of features based on semantic properties relies on the
interpretation of the query. Hence, the queries are not considered as given (i.e., as text) but
in the internal, abstract representation created during pre-processing. The features then can
be extracted for all the queries to be compared. This is demonstrated in Example 5.2.

Query REL NAMES PRO ATTRS JOIN OPS

q0 department name,sales
q1 dept,manager name INNER
q2 department
q3 manager id

Table 5.2.: Three features extracted for the example queries

Example 5.2. For the matching task of the running example, three kinds of features are con-
sidered: REL NAMES, PRO ATTRS, and JOIN OPS. The outcome of the feature extraction
is shown in Table 5.2. It shows the features used for comparison in the header, and the actual
values extracted from the di↵erent queries in the body.

37

5. Query Matching – A Combined Approach

Index Search

The comparison of the extracted features can be e�ciently realized with index search, which
achieves logarithmic complexity. Therefore the queries to be compared are indexed using
the di↵erent features occurring in them (i.e., the indexed terms do not refer to documents,
but represent queries). For the comparison of two queries, the index has to be queried by
transforming one of the two queries in a search query for the index. This is demonstrated in
Example 5.3

Example 5.3. Below, q
orig

has been transformed in a query for index search. The index
considered uses the three features REL NAMES and PRO ATTRS, and JOIN OPS, for
indexing. This indexing of the individual queries is illustrated for q1, which is shown how it is
represented in the index.

q

orig

: REL NAMES : department OR PRO ATTRS : name OR PRO ATTRS : s a l e s

q1 :
REL NAMES : dept , manager
PRO ATTRS : name
JOIN OPS : INNER

Ranking and Similarity Computation

Since the index-based comparison relies on the text recorded in the features, the distance
function has to calculate a similarity value using the corresponding information. Existing
work in text search and matching often concentrates on TF-IDF [30, 31, 81]. Next to the
term frequency and inverse document frequency, Apache Lucene [1], a library for index search,
includes further factors in the calculation, which also provide a useful means for indexing
features; therefore, an adapted version of the formula is used as a basic method for the
similarity search approach. This section, first, demonstrates the similarity calculation using
this formula in Example 5.4. Second, it proposes methods for refining it.

Example 5.4. Consider again the index of Example 5.3. In this example, a similarity value
is computed for each query regarding q

orig

. For the corresponding formula, refer to Chapter 2.
In the following, always, q

s

= q

orig

. First the normalizing factor, common for all values, is
calculated as

qNorm(q
orig

) =
1p

idf(department)2 + idf(name)2 + idf(sales)2

=
1q

(1 + ln 4
2+1)

2 + (1 + ln 4
2+1)

2 + (1 + ln 4
1+1)

2

= 0.4022

Then, the individual values are calculated with function fscore as for the two examples
below:

fscore(q
orig

, q0)

= 1 ⇤ qNorm(q
orig

) ⇤ (1 ⇤ idf(department)2 +

r
1

2
⇤ idf(name)2 +

r
1

2
⇤ idf(sales)2)

= 1.9536

38

5.2. The Combined Matcher

fscore(q
orig

, q1) =
1

3
⇤ qNorm(q

orig

) ⇤ 1 ⇤ idf(name)2

= 0.2223

After the computation of the similarity values, the filtering can be realized such that queries
that are no recommendations according to the feature-based computation do not pass the filter.
Further possible passing-criteria are a threshold for the similarity value or a restriction on the
number of queries to pass the filter (e.g., only the best 10 recommendations are forwarded to
schema matching).

Since the Lucene-based distance function allows to rank the matching queries according
to their similarity, it can be applied for filtering as intended in the matching framework and
described above. Nevertheless, the result values of that formula are too arbitrary for a general
query matcher. First, the multitude of features considered enlarges the di↵erences between
the similarity values of the queries. Since the values, further, exceed the interval of [0..1], they
are not comparable to the results of other matchers. Moreover, the values are not symmetric.
To overcome these obstacles and to construct a Feature Matcher we propose three extensions,
which are described in the following.

The calculation of the similarity values should focus on the common features of the queries
compared. To stress these similarities, features that occur only once in the data set may be
neglected in the similarity calculation (i.e., the search includes only fields for features where
at least one term occurs in at least one of the queries compared that is not the search query
itself). The resulting e↵ect is that the di↵erence between the similarity of the search query to
itself and to an arbitrary query q (i.e., fscore(q

orig

, q

orig

)� fscore(q
orig

, q)) is not enlarged
by including features that occur only once in the data set. Hence, for example, the search
query corresponding to q1 would not include the JOIN OPS feature, because an inner join
does not occur in any other query. Thus, the similarity calculation is adapted to the current
context (i.e., to the set of queries considered). This consideration is sound as long as the
similarity values are considered in this context since the over-all ranking is maintained.

To enable a comparison between di↵erent index searches, the Lucene-based distance function
includes a normalization factor. But to make the feature-based matchers comparable to other
matchers, the distance function has to deliver a value between 0 and 1. Furthermore, the value
should be the same for corresponding pairs (i.e., it must be symmetric). On the contrary, the
above function computes also values exceeding the interval of [0..1] and is not symmetric. The
latter is because the coordination factor and the term frequency refer to the second parameter
of function fscore that are not always the same for arbitrary queries. As a consequence, the
value has to be normalized.

To normalize the similarity values, the similarity of the search query to itself, usually the
maximum of all results, is used as a reference, and every result is divided by that value to
obtain a similarity value between 0 and 1. The symmetry is obtained by taking the average of
the two similarity values that should be made symmetric. This is demonstrated in Example
5.5.

Example 5.5. In Example 5.4 the similarity values were computed for q
orig

= q0. Similarly,

39

5. Query Matching – A Combined Approach

the values for all other queries can be computed leading to the matrix shown below.

0

BB@

q0 q1 q2 q3

q0 1.95 0.22 0.22 0.00
q1 0.16 1.95 0.00 0.22
q2 1.29 0.00 1.29 0.00
q3 0.00 0.91 0.00 1.29

1

CCA

The values calculated in Example 5.4 correspond to the entries in the first row of the matrix.
After adapting the matrix regarding the interval [0..1] (i.e., all values of a row are divided
by the maximum of that row) and taking the average of all matrix entries that should be
symmetric, the matrix looks as follows.

0

BB@

q0 q1 q2 q3

q0 1.00 0.10 0.56 0.00
q1 0.10 1.00 0.00 0.41
q2 0.56 0.00 1.00 0.00
q3 0.00 0.41 0.00 1.00

1

CCA

Note that, for example, the similarity value calculated by the Feature Matcher for the pair
(q0, q3) is 0. Since the Feature Matcher serves as a filter in the Combined Matcher, q3 is
eliminated and not considered further.

As a result, the Feature Matcher would provide the following recommendations for q
orig

= q0:

R

f

= {(q0, 1.0), (q2, 0.56), (q1, 0.10)}

Global features of a query represent a useful means for deciding about query similarity, because
extracted and stored once, they are fast accessible at any time in future and they may represent
arbitrary pieces of information. Nevertheless, features cannot capture the entire syntactic
and semantic information contained in queries. The recommendation of the Feature Matcher
shows that it detects similarities between the queries, but the calculation of the values is based
only on the equality of individual terms (e.g., it does not recognize a similarity between the
sales and totalsales attributes in the example). In particular, contextual information beyond
the kind of the index fields is not retained (e.g., features in a subquery would not be discerned
from those on the first level). For that reason, schema matching, which performs a more
fine-grained comparison, is applied, as a second phase of matching – to refine the similarity
values.

5.2.2. The Schema Matcher

A comparison of queries on syntax level should include a very fine-grained element-level
comparison and a consideration of subexpressions of di↵erent granularity. Both cases are
addressed by schema matching, which can be used for matching the parse trees of queries.
Schema matching, applied second in the matching framework shown in Figure 5.1, constitutes
a major component of the methodology. This is because there are many algorithms which can
be adapted, extended, and used as a basis for a new Schema Matcher for queries.

By considering the queries in the form of their parse trees, the problem of matching two
queries becomes a schema matching problem. Schema matching makes it possible to match
individual query parts, which are groups of schema elements, of di↵erent granularity and
w.r.t. several sorts of information (e.g., the subexpressions can be compared regarding their

40

5.2. The Combined Matcher

syntax but also include semantic information by comparing data types). To determine a single,
overall similarity value between two queries, the similarity values of the individual element
pairs need to be aggregated after matching on element level.

In order to apply schema matching methods, the query has to be represented in a schema
structure. Then, a schema matcher compares the elements of the two schemas to each other
w.r.t. specific criteria (e.g., regarding the similarity of the names) and computes similarity
values for the individual pairs of elements. Lastly, those similarity values are coerced into one
value. This processing is described in more detail, in the sequel.

Schema Extraction

The schema structure taken in this work, in essence, is the parse tree of the queries. However,
in order to abstract from di↵erent query languages, it is built from the abstract representation.
The latter is augmented by making additional information (e.g., the name of the query and
data types) explicit. The information added depends on what information is processed by the
schema matchers (for an overview of the matchers considered refer to Chapter 2) and can be
easily encoded in textual form. Figure 5.2 shows the schemas for two example queries.

Figure 5.2.: The schemas for the two example queries q
orig

and q1, shown below

q

orig

:
SELECT name , s a l e s
FROM department
WHERE manager=’Chang ’

q1 :
SELECT name
FROM dept d JOIN manager m ON d . id=m. dept id
WHERE t o t a l s a l e s >50000

As already mentioned, the schema structure has been optimized for the processing of specific
matchers. The particular points considered are described in the next section.

41

5. Query Matching – A Combined Approach

Schema Matchers

Unlike with matchers based on similarity search, which may compare di↵erent features but use
the same algorithm (i.e., index search), schema matchers may execute very di↵erent algorithms
to perform the actual comparison. An overview of several traditional schema matchers is
presented in Chapter 2. Note that this are exactly the matchers available in the AMC [68],
which are evaluated for query matching, in this study. This section, first, gives reasons for
the application of existing matchers and details about the chosen schema structure w.r.t.
the matchers evaluated. Thereafter, the processing of the matchers is demonstrated in an
example.

Contrary to developing custom query matching algorithms that perform schema match-
ing, this thesis concentrates on the application and evaluation of traditional schema matching
algorithms combined in the Schema Matcher. Connected to this are three major advantages:

1. The existing schema matching algorithms have been developed over a long time and
present proven solutions for the schema matching problem. They incorporate a lot of
experience and cover most possibilities of matching.

2. Schema matching is a rather general classification criterion for algorithms, and there are
multiple schema matching approaches, which apply di↵erent kinds of schema matchers.
By concentrating on the creation of the schema structure, the query matching system is
independent of a specific selection of schema matchers and can be configured according to
external circumstances (i.e., considering the matchers available as well as the requirements
of a particular application domain).

3. The independence of specific schema matchers makes the system lend itself to evaluations
of di↵erent schema matchers regarding their applicability for query matching.

Hence, instead of adapting the existing matchers, we tailor the schema structure to their
processing. The preliminaries include matchers of di↵erent granularity: element-level (i.e., the
Type, Name, and Path Matcher) as well as structure-level matchers (i.e., the Parent, Children,
Sibling, and Leaf Matcher). The information matched is determined by the element-level
matchers applied; apart from the Type Matcher, all of them concentrate on the names of the
schema elements. As a consequence, these names have to be chosen carefully during schema
creation. Also, because the structure-level matchers of the AMC are based exclusively on
name and type matching. Next follows a description of how the parse trees of the queries are
transformed for matching, in this work.

As mentioned above, the schema structure is based on the abstract representation of the
queries. A corresponding schema naturally contains a named element for every term in the
algebraic expression. The term thereby determines the element-name. This schema can be
enriched with further information. In particular, the type of the subexpression is added to
every schema element (e.g., Figure 5.2 shows, beneath others, an element with name Salary
and Attribute as type). Recall that general database schemas include type information only
for attributes, the leaves of the schema.

Although the matchers considered do not regard further semantic information, this informa-
tion can be used to set up the schema structure. The following points were considered for
adjustments to the original schema structure, resulting from the parse tree:

42

5.2. The Combined Matcher

• In the algebraic expression, the operations are applied one after another (e.g., in Figure
5.2, the selection nodes, named �, would be child nodes of the projection nodes, denoted
by ⇡). Often, however, the order has no influence on the semantics of the complete
query. Therefore, an extra node is added for operations referring to the same relation,
which groups those operations together with the corresponding relation.

• Since the matchers do not consider query semantics, qualifiers (e.g., for tables or
attributes) are neglected in the schema structure. In particular, the matchers do not
recognize the relations within one query that are established by qualifiers, which relate
the attributes to the relations they refer to. Next to the uselessness of the qualifiers,
another reason for their removal is that they otherwise can be matched falsely (i.e., a
matcher maps them to other query parts) and then degrade the result.

• Similar to the removal of qualifiers, rename operations are not considered – although
they may contain expressive names and, hence, present a source of information. This is
because renaming is usually applied to facilitate query writing. As a consequence, the
names introduced are often very short and rather cryptic such that a degradation of the
result is more likely than an improvement.

Another kind of semantic information is that introduced by the query language, or algebra,
with its expressions (e.g., the name of a function could be explicitly added as a child of a
Name-element, which, itself, is the child of a Function-element – instead of adding the name
directly as a child of the Function-element). This would add considerably more information
to the schema, which could be exploited by the matchers. Especially, the preciseness of the
Path Matcher would increase because the paths become much more concise. In this work,
however, this information is not attached. This is because several of the matchers applied are
structural matchers that consider as context two consecutive levels (e.g., the Sibling Matcher
regards the siblings of a schema element w.r.t. the direct ancestor of that element). Hence,
these matchers would fail in establishing relations between the leaves, which are the important
elements to be matched. Instead, they would consider relations between leaves and elements
of the algebra (i.e., the operations), or only between the latter.

Although the di↵erent schema matchers base their similarity calculation on a custom compari-
son algorithm, they all return a matrix as result. This matrix contains the pair-wise similarity
values for the elements of the two queries matched. Example 5.6 gives an example for such a
match result.

Example 5.6. For an example of the processing of schema matchers, the Name Matcher is
considered. The execution of the algorithm applied to the schemas representing q

orig

and q1

leads to the following matrix of similarity values between the elements in the two schemas,
which are enumerated in depth-first order:

0

BBBBBBBBBBBB@

⇡ name � condition totalsales 50000 > ./ condition ...

⇡ 1.00 0.11 0.60 0.50 0.00 0.00 0.10 0.30 0.50 ...

name 0.11 1.00 0.12 0.12 0.20 0.00 0.00 0.17 0.12 ...

sales 0.10 0.40 0.33 0.00 0.56 0.00 0.00 0.00 0.00 ...

� 0.60 0.12 1.00 0.44 0.09 0.00 0.11 0.22 0.44 ...

condition 0.50 0.12 0.44 1.00 0.10 0.00 0.11 0.33 1.00 ...

manager 0.00 0.43 0.00 0.11 0.30 0.00 0.14 0.00 0.11 ...

0
Chang

0 0.10 0.20 0.11 0.11 0.10 0.00 0.20 0.20 0.11 ...

= 0.10 0.22 0.11 0.00 0.10 0.00 0.00 0.00 0.00 ...

department 0.10 0.30 0.30 0.20 0.10 0.00 0.13 0.10 0.20 ...

1

CCCCCCCCCCCCA

43

5. Query Matching – A Combined Approach

Note that the matrix contains additional matches between element-pairs, which are not
displayed due to space restrictions.

The di↵erent element-level similarity values then have to be combined, which is described
next.

Schema Similarity Value

Based on custom algorithms, schema matchers compute similarity values for all pairs of
elements between the two schemas matched. The formula finally combining the individual
values to one over-all similarity value is shown below.

ssim(S, T,M
S,T

) =

i=|S|P
i=0

j=|T |P
j=i

m

i,j

i=|S|P
i=0

j=|T |P
j=i

sgn(m
i,j

)

⇤

i=|S|P
i=0

sgn(
j=|T |P
j=0

m

i,j

) +
j=|T |P
j=0

sgn(
i=|S|P
i=0

m

i,j

)

|S|+|T |

The schema similarity function ssim computes the average of those values that are not zero
and rates it according to the percentage of the respective elements considering all elements of
the two schemas. Its input consists of two ordered sets S and T of the elements of the two
schemas and a matrix M

S,T

with all the similarity values for the element pairs between the
two schemas. The matrix is indexed with the positions of the elements in the sets (i.e., m

ij

denotes the similarity value between the elements at positions i and j in S and T , respectively).
Further, sgn stands for the Signum function, which is 0 for values that are 0 and 1 for values
greater than 0. Note that ssim, in essence, corresponds to the function for a combined schema
similarity proposed by Do [28]. This formula was adapted to capture undirected matches and
instantiated with a selection function that takes the average of the similarity values of all
match candidates.

Further, note that the function ssim assumes the similarity values returned by the matchers
to express real correspondencies between schema elements. This assumption is common in
the schema matching domain. In contrast, similarity values in query matching express a
more subjective similarity. A query similarity value does not necessarily mean a complete
correspondence of two queries if it is greater than 0.

In order to discern the real correspondencies in the result of a matcher, selection strate-
gies as described by Do [28] are applied. A detailed description of several such strategies
is given in Chapter 2. In the following, we focus on the Threshold strategy, which sets all
similarity values below a specific threshold to 0, to select the real correspondencies. The
threshold applied is called combination threshold. An exemplary application of this strategy
and the subsequent calculation of the combined schema-similarity is given in Example 5.7.

Example 5.7. Consider the similarity matrix between the schemas of q
orig

and q1 which
is computed by the Name Matcher as described in Example 5.6. The application of the
Threshold strategy on this matrix using a combination threshold t = 0.7 results in the matrix

44

5.2. The Combined Matcher

shown below.

0

BBBBBBBBBBBB@

⇡ name � condition totalsales 50000 > ./ condition ...

⇡ 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

name 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

sales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

� 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

condition 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 ...

manager 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

0
Chang

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

department 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

1

CCCCCCCCCCCCA

The above matrix contains additional matches between the element-pairs (department, dept),
(manager,manager), and (=,=) all rated 1.0, which are not displayed due to space restrictions.

Within the above matrix only 8 entries are matches. Apart from the condition-element
in q

orig

, every element appears in only one match. Thus, 7 elements of the source and 8
elements of the target schema, take part in the mapping. Let E

q

orig

and E

q1 denote the sets
of elements in q

orig

and q1, respectively. Then, the corresponding schema-similarity value for
the queries is computed as:

ssim(E
q

orig

, E

q1 ,Mq

orig

,q1) =
1.0 + 1.0 + 1.0 + (1.0 + 1.0) + 1.0 + 1.0 + 1.0

8
⇤ 7 + 8

9 + 15
= 0.625

After having computed the similarity values with the Name Matcher as above, the Combined
Matcher would provide the following recommendations for q

orig

= q0:

R = {(q0, 1), (q1, 0.63), (q2, 0.18)}

The restricted syntax of queries together with their belonging to the database domain makes
schema matching a useful technique for matching queries. The problems of schema matching,
which usually struggles with very large and heterogeneous real-world schemas, are narrowed
down since queries are of manageable size. Moreover, the traditional schema matching
algorithms o↵er a fine-grained processing tailored to database schemas, which resemble the
query-structure. The various schema matchers also consider external information (e.g., thesauri
and dictionaries). However, to benefit from the many existing schema matching algorithms,
the results of di↵erent matchers have to be aggregated, which is described in the next section.

5.2.3. Aggregation and Selection

In schema matching, where a number of matchers is used to compute di↵erent similarity
values for all elements in two schemas, strategies to aggregate the results of di↵erent matchers
and to select specific element-to-element matches based on their similarity are commonly used
[69]. Chapter 2 gives an overview of selected examples.

The aggregation enables the parallel execution of di↵erent matchers by aggregating their results.
The selection is applied to the result of a matcher as a post-processing and sets similarity values
that do not adhere to the corresponding selection strategy to 0. Hence, it refines the result.
In this work, these strategies are applied in two ways. They are used during schema matching
as originally intended [28]; the selection already has been demonstrated in Example 5.7. Ad-
ditionally, the concepts are transferred to the level of queries. Both is described in the following.

45

5. Query Matching – A Combined Approach

In schema matching, the aggregation and selection of similarity values is on the level of
elements. Example 5.8 demonstrates the aggregation. Thereby, the selection can be applied
at any stage (i.e., before or after the aggregation). As mentioned above, it is important for
the concept in this thesis because it strongly influences the function ssim, which computes
the final query similarity.

Example 5.8. Consider the extracts of match results proposed by the Name and Type
Matcher as shown below. The aggregation of the two match results using the Average strategy
(i.e., it takes the average of the similarity values for each pair of elements) is displayed
thereafter. It would then be combined to a schema similarity value as it was demonstrated in
Example 5.7.

The result of the Name Matcher:

0

BBBBBBBBBBBB@

⇡ name � condition totalsales 50000 > ./ condition ...

⇡ 1.00 0.11 0.60 0.50 0.00 0.00 0.10 0.30 0.50 ...

name 0.11 1.00 0.12 0.12 0.20 0.00 0.00 0.17 0.12 ...

sales 0.10 0.40 0.33 0.00 0.56 0.00 0.00 0.00 0.00 ...

� 0.60 0.12 1.00 0.44 0.09 0.00 0.11 0.22 0.44 ...

condition 0.50 0.12 0.44 1.00 0.10 0.00 0.11 0.33 1.00 ...

manager 0.00 0.43 0.00 0.11 0.30 0.00 0.14 0.00 0.11 ...

0
Chang

0 0.10 0.20 0.11 0.11 0.10 0.00 0.20 0.20 0.11 ...

= 0.10 0.22 0.11 0.00 0.10 0.00 0.00 0.00 0.00 ...

department 0.10 0.30 0.30 0.20 0.10 0.00 0.13 0.10 0.20 ...

1

CCCCCCCCCCCCA

The result of the Type Matcher:

0

BBBBBBBBBBBB@

⇡ name � condition totalsales 50000 > ./ condition ...

⇡ 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

name 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 ...

sales 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 ...

� 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

condition 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 ...

manager 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 ...

0
Chang

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

= 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 ...

department 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

1

CCCCCCCCCCCCA

The aggregation of the above match results using the Average Strategy:

0

BBBBBBBBBBBB@

⇡ name � condition totalsales 50000 > ./ condition ...

⇡ 1.00 0.06 0.30 0.25 0.00 0.00 0.05 0.15 0.25 ...

name 0.06 1.00 0.06 0.06 0.60 0.00 0.00 0.08 0.06 ...

sales 0.05 0.70 0.17 0.00 0.78 0.00 0.00 0.00 0.00 ...

� 0.30 0.06 1.00 0.22 0.04 0.0 0.06 0.11 0.22 ...

condition 0.25 0.06 0.22 1.00 0.05 0.00 0.06 0.17 1.00 ...

manager 0.00 0.71 0.00 0.06 0.65 0.00 0.07 0.00 0.06 ...

0
Chang

0 0.05 0.10 0.06 0.06 0.05 0.00 0.10 0.10 0.06 ...

= 0.05 0.11 0.06 0.00 0.05 0.00 0.50 0.00 0.00 ...

department 0.05 0.15 0.15 0.10 0.05 0.0 0.07 0.05 0.10 ...

1

CCCCCCCCCCCCA

46

5.3. Conclusion

On the level of queries, especially, the application of selection strategies is of advantage.
They refine the final recommendation result and, thus, are influential parameters during the
evaluation. Example 5.9 demonstrates the application of the di↵erent selection strategies
described in Chapter 2. Note that, unlike in the definition of the selection strategies for schema
matching, the values are only selected regarding the rows in a matrix of query similarity
values.

Example 5.9. Below, the first matrix shows the aggregated and combined results of the
Name and Type Matcher. The results of the application of the three selection strategies
MaxN, MaxDelta, and Threshold are displayed thereafter. The parameters used are n = 2,
d = 0.4, and t = 0.4.

The combined results: MaxN:

0

BB@

q0 q1 q2 q3

q0 0.92 0.62 0.18 0.00
q1 0.62 0.97 0.00 0.50
q2 0.18 0.00 1.00 0.00
q3 0.00 0.50 0.00 1.00

1

CCA

0

BB@

q0 q1 q2 q3

q0 0.92 0.62 0.00 0.00
q1 0.62 0.97 0.00 0.00
q2 0.18 0.00 1.00 0.00
q3 0.00 0.50 0.00 1.00

1

CCA

MaxDelta: MaxThreshold:

0

BB@

q0 q1 q2 q3

q0 0.92 0.62 0.00 0.00
q1 0.62 0.97 0.00 0.00
q2 0.00 0.00 1.00 0.00
q3 0.00 0.00 0.00 1.00

1

CCA

0

BB@

q0 q1 q2 q3

q0 0.92 0.62 0.00 0.00
q1 0.62 0.97 0.00 0.50
q2 0.00 0.00 1.00 0.00
q3 0.00 0.50 0.00 1.00

1

CCA

In general, the aggregation as well as the selection are applicable in all phases of match-
ing (i.e., with match results of the Feature or Schema Matcher), on query-level, too. This
is because all matchers deliver similarity values between 0 and 1. Nevertheless, the appli-
cation of an aggregation strategy only makes sense if several matchers are applied in one phase.

After limiting the set of possible recommendations with the Feature Matcher, applying
di↵erent schema matchers (i.e., the Name and the Type Matcher) and aggregating their
results within the Schema Matcher, and selecting those values above t = 0.4, the query
recommendation system would provide the following recommendations for q

orig

= q0:

R

f

= {(q0, 0.92), (q1, 0.62), (q2, 0.0)}

5.3. Conclusion

This chapter presented a combined, content-based approach for query recommendation based
on query matching that fulfills the requirements specified in Chapter 3. The procedure
proposed works on an abstract query representation and, hence, is independent of specific
query formats and languages. Thus, the interoperability criterion is met. The required
interactivity is achieved by applying a matching algorithm based on index search, which is of
logarithmic complexity. In order to produce recommendations of good quality, several schema
matching algorithms are applied. The translation of the query into a schema structure has
been optimized for a selection of traditional matchers. In general, however, the approach
is independent of particular schema matchers and, hence, can integrate di↵erent existing
approaches. It also can be configured according to various circumstances, especially to custom

47

5. Query Matching – A Combined Approach

domains. Finally, proven aggregation and selection strategies from the domain of schema
matching have been incorporated into the query matching framework to enable the parallel
execution of matchers and to improve the result.

Nevertheless, to demonstrate its usefulness, the query recommendation system has to be
evaluated in an adequate setting. This is covered in the next chapter, which presents details
about the empirical evaluation conducted in the course of this study.

48

6. Evaluation

This chapter describes the evaluation of the query recommendation system developed in this
work. For the creation of an evaluation-data set, which presents a major contribution of this
thesis, an empirical study has been conducted and is described in the first section. Next,
follows an overview of the evaluation-setting, the presentation, and the analysis of the results.

6.1. Empirical Study

With recommender systems and query completion methods, current approaches for query
recommendation focus on goals di↵erent from remix. For both, obvious evaluation meth-
ods exist: for the former, query recommendations are rated successful if they belong to
one session; for the latter, recommended completions for a partial query can be compared
to the original query. Note that query completion evaluations also use session informa-
tion [51] or directly ask users to rate the system results [47], in order to include a larger
context. Since remix does not rely on session information and only works with complete
queries, neither of the existing evaluation methods is appropriate for an automated, large-scale
evaluation. Hence, its evaluation requires a set of queries where correct recommendations
for a query were marked in advance – based on a general, human perception of query similarity.

This section describes the alternatives for the set of queries and the empirical study con-
ducted to augment them with similarity information. The latter includes the survey design,
preparation, implementation, and results.

6.1.1. Data Set Alternatives

The requirements for the evaluation data, given in the following, reflect those of remix described
in Chapter 3.

• Similarity values between query pairs (E↵ectiveness)

• Appropriate variability and complexity (Quality)

• Adequate size (Interactivity)

• Di↵erent data sources (Interoperability)

• Di↵erent domains (Domain-Independence)

Apart from reports, which are usually not available in larger amounts, there are other query
sources which can be considered as data set alternatives. Sets of queries generally can be
found in tutorials (e.g., query samples in a tutorial for a query language like SQL), generated
by query generation engines with the help of templates (e.g., the engines which come with
benchmarks for DBMS like the TPC [15]), or given with the logs of database systems. Ta-
ble 6.1 gives an overview of how they fulfill the data set requirements for query recommendation.

Nevertheless none of the alternatives fulfills all of the requirements described. The vari-
ability and complexity of queries extracted from reports strongly depends on the reports
themselves; in general, however, larger sets of di↵erent kinds of reports are not available.

49

6. Evaluation

Source Similarities Variability Complexity Size Interoperability

Reports x x x
Tutorial x
Generation x x x
Query Log x x x

Table 6.1.: Overview of data set alternatives

Though, interoperability is provided if reports from di↵erent tools are regarded. By contrast,
queries from tutorials are easier accessible and often include variation. But they usually
are neither very complex, nor available in su�cient numbers. Query-generation engines
overcome the size objection. But even though they may be complex enough, address di↵erent
databases, or reflect di↵erent domains, they naturally lack the required variability. Query
logs of large database systems with di↵erent users usually fulfill the variability, complexity,
and size criterion. The interoperability and domain-independence of the queries depends on
the layout and domains covered by the corresponding databases. Note that the similarity
criterion is met by none of the available data sets.

Based on the above analysis, a set of queries extracted from the query log of the Sloan
Digital Sky Survey (SDSS) [14] has been used as basis for the data set. The SDSS maintains a
very large, open database containing scientific data about the universe. Its query log contains
millions of SQL queries issued by di↵erent users. Since the SDSS database also contains
views for the tables, the data set even partially meets the interoperability requirement. The
empirical study conducted in the course of this study to augment queries from the SDSS with
similarity values is described in the next section.

6.1.2. Preparation

The original data set was pre-processed in two ways before being used in the survey: In a first
step, the set of queries was pre-processed and filtered for reasons of diversification. Second,
similarity values were precomputed for obvious cases. Due to the large amount of data the
entire processing was done in an automated fashion. The corresponding SQL scripts can be
found in the Attachments A.

The first set of queries was chosen arbitrarily (see the query used to retrieve the set in
enclosed in the Attachments A) and subsequently processed to filter out specific instances:

1. Query duplicates

2. Queries too long to be grasped by the survey participants in an acceptable amount of
time (i.e., queries consisting of more than 350 characters)

3. Erroneous queries

In addition, queries which only di↵ered in values (e.g. ’SELECT * FROM manager WHERE
name=’Chang” and ’SELECT * FROM manager WHERE name=’Chong”) were restricted to
two examples per occurrence. Note that all nested queries had to be filtered out because they
were too long and, thus, not adequate for the survey-setting.

50

6.1. Empirical Study

Since all SDSS queries target one database system, several similarity values could be precom-
puted in advance: all those query pairs that neither query the same table or a corresponding
view nor use common attributes should not be similar. Furthermore, every query is very
similar to itself. The exclusion of the precomputed similarity values reduced the original
22,500 similarity values to be found to about 9,000.

6.1.3. Design and Implementation

An empirical study validates its findings with a large set of participants. To reach the su�cient
number of participants, the ’Query Similarity Survey’ was conceived as a Web application.
The goal of this survey was to get a similarity value for each pair of queries in the data set
through the rating of real persons. Its design and implementation are presented in this section.

In order to get an impression of the SQL knowledge of the participants, every user had
to give a rating about his SQL skills in advance. The choice of the rating is given in the
following:

• SQL? I know that is something used with databases.

• I learned some SQL at school.

• I did some basic database course at university (or similar).

• I use databases for my work.

• I’m a master of SQL.

In the survey, the users were then presented one source query which they had to compare to
three other queries. As similarity rating, one of the following could be chosen:

• Not similar

• Maybe similar

• Similar

• Very similar

A screenshot of the final application can be seen in Figure 6.1. The compositional structure of
the survey application is shown as FCM Block Diagram in Figure 6.2. It has been implemented
in Java, Java Script, and HTML and is running on a Tomcat Server [2]. The participants
comfortably access the application via a Web Browser. Apart from the QuerySurveyUtils-
component, the application has been implemented independent of the actual data. The latter
is processed as text and stored in a MySQL [13] database, where it can be administrated
directly.

The independence of specific survey data presents a major benefit of the application and
makes it usable as a framework for surveys about similarity of arbitrary objects. With 875
lines of Java code (LOC) it is not too complex to handle and can be reused in future similarity
evaluations for remix (e.g., regarding visualization objects). At the time of finishing this work,
a PhD student is using the tool for retrieving similarity values for ontological concepts.

6.1.4. Results

This section summarizes details about the survey results and describes the function applied to
transfer the user ratings to similarity values.

51

6. Evaluation

Figure 6.1.: Screenshot of the survey application

Figure 6.2.: The compositional structure of the survey application

The survey was started by 121 participants. About 50% of them reported to have ba-
sic SQL knowledge, 40% had deeper, and 10% only rudimentary knowledge of SQL. On
average, the participants rated 82 queries. Conversely, the 8,595 retrieved similarity values
were averagely rated by 1.2 people, who in about 70% of the 1,307 cases with multiple votes
agreed in their rating. All in all, the study lead to a data set of 150 queries with similarity

52

6.2. Overview

values between all of them.

The function sv : [0..3] ! [0..1] used to compute a similarity value for a pair of queries
based on several ratings of survey participants is defined as follows:

sv(r) =

8
<

:

0 if r = 0
1 if r = 3
(r + 0.5) ⇤ 0.25 else

The function takes the average rating of the users as input and transforms it into a similarity
value in the interval [0..1]. If all users agree on a rating of ’not similar’ or ’very similar’, the
value is 0 or 1, respectively. Otherwise, the function precisely reflects the average rating by
selecting the corresponding value in the interval of the rating. For that, the interval [0..1] is
split into the intervals [0..0.25[, [0.25..0.5[, [0.5..0.75[, and [0.75..1], which correspond to the
four rating possibilities. For example, given an average rating of 1.5 (i.e., between ’maybe
similar’ and ’similar’) for a pair of queries, function sv returns exactly 0.5.

In contrast to evaluations in IR or recommender systems which often only apply a ref-
erence set with a binary scale [41], this study considers a more fine-grained data set using a
numerical scale. Nevertheless, the ratings of the users often agree and certain values accu-
mulate. For the limited sets of queries considered containing always only a subset of similar
queries, however, the scale of values applied in this study o↵ers enough possibilities to evaluate
the recommendation system w.r.t. di↵erent aspects of similarity computation. In particular,
it allows for a consideration of the ranking.

After the detailed description of the retrieval of the test data in this section, an overview of
the evaluation is given, next.

6.2. Overview

This section gives a detailed description of the evaluation-setting including specifications of the
data sets and the individual experiments conducted. Moreover, it covers the implementation.

6.2.1. Data Sets

Table 6.2 gives details about the data sets used in the evaluation. The first set, SDSS, is the
result of the empirical evaluation described above. The second data set consists of queries
extracted from an SQL tutorial.

Property SDSS SQL Tutorial

Number of queries 150 43
Recommendations per query >3/>5/>10/>15 (in %) 96/87/52/29 61/49/28/2
Min/Max/Avg query length (word count) 6/82/38 4/42/18
Share of nested queries 0/150 7/43

Table 6.2.: Statistics of the test data

As mentioned above, the SDSS data set contains scientific queries addressing a very large
DBMS. The queries were issued by di↵erent users and sometimes also generated by tools –

53

6. Evaluation

there are, for example, query templates, which only have to be filled by the users. In order
to have a variable data set, it contains maximal two occurrences of queries with the same
structure only di↵ering in values. The similarity values for the data set were retrieved with
the empirical study described in the previous section.
The SQL Tutorial data set consists of queries extracted from an SQL tutorial. Most of these
queries are about the business domain. Since the queries are intended to show di↵erent
concepts of SQL, they contain a very variable structure. In sum, however, the queries are not
very complex because they target SQL learners. The tagging of the data set with similarity
values was done by the author of this thesis.

Further, note that the queries in both data sets are SQL queries.

6.2.2. Experiment Design

This section describes the goals of the evaluation and gives details about the experiments.
The experiments conducted in the course of this study focused on the following two topics:

1. Configuration and Evaluation of Schema Matchers
The applicability of schema matchers for query matching was evaluated in the first part
of the evaluation. For that, the configuration of the individual matchers had to be
determined, in advance. In addition, di↵erent combinations of schema matchers were
evaluated regarding their query recommendation performance.

2. Evaluation of the Combined Matcher
The actual performance of the query recommendation system developed in Chapter
5, was showed by regarding the accuracy of its recommendations as well as scalability
issues. In particular, it addressed the following issues:

• It showed that the performance of the Feature and the Schema Matcher, which
were presented in Chapter 5, is better than methods provided by state-of-the-art
systems (e.g., keyword search).

• It showed that the combination of the Feature and the Schema Matcher outperforms
the individual approaches – in particular, that the scalability issues of schema
matching are solved by the filtering and that the recommendation accuracy is not
a↵ected considerably.

• It showed that the extension of the similarity function proposed by Apache Lucene
[12], which is described in detail in Chapter 5, is of advantage and computes a
more accurate similarity value.

The experiments included all the schema matchers presented in Chapter 2 and considered
all 29 � 1 combinations (i.e., apart from the general matching approaches, two more specific
matchers, the W-Name and the T-Path Matcher, were included. Both proceed like the respec-
tive base implementations but break down the element names into tokens; the comparison is
then performed on a more fine-grained level). Further, they considered all 11 combination and
selection thresholds in the interval [0,0.1,..,1]. Consequently, 61,831 (i.e., (29 � 1) ⇤ 11 ⇤ 11)
combinations were evaluated. For the configuration of the matchers, every third query was used
considering both data sets (i.e., 50 queries of the SDSS data and 14 of the SQL Tutorial queries).

Then, the final evaluation considered the remaining 129 queries of the two data sets and
the query recommendation approaches given in Table 6.3. They are, in the following, often
addressed by the names given in the table. The e↵ectiveness of the individual approaches

54

6.2. Overview

developed in Chapter 5 was determined by comparing the results they delivered to two
baseline approaches, the String and the Text Matcher. In particular the String Matcher,
which computes the similarity value by relating the size of the largest common substring
of two queries to the one of the longer of them, represents the keyword search applied in
state-of-the-art DBMS [50]. The Text Matcher maintains an index and performs text search
as it was exemplarily described in the problem introduction in Chapter 3. It calculates the
similarity values based on a combination of TF-IDF and the cosine similarity1.

Name Description

Combi The Combined Matcher presented in Chapter 5
Schema The Schema Matcher proposed in Chapter 5
Feature The Feature Matcher proposed in Chapter 5
String A matcher computing a string similarity
Text A matcher performing text search

Table 6.3.: The matchers considered in the evaluation

The measurements applied for evaluating the quality of query recommendation are also
described in Chapter 2. The evaluation results presented are usually the average values for
all recommendation tasks in one data set (i.e., naturally, the number of recommendation
tasks corresponds to the number of queries in the data set). In addition, the scalability was
considered. Therefore, the runtime was measured during the evaluation executing all matchers
on a usual o�ce PC using an Intel Core 2 Duo, four gigabyte RAM and a Java 6 (32-bit)
environment.

6.2.3. Architecture and Implementation

This section covers implementational issues of both the query recommendation system and its
evaluation.

Query Recommendation System

Figure 6.3 gives an overview of the architecture of the system, which has been implemented
prototypically in Java as part of this work. It accepts textual queries as input (e.g., strings or
CSV files), imports, and parses them, and stores them in an abstract representation in the
system. These queries then are the base from which recommendations are provided, if a user
queries the system.

A major part of the system consists of the functionality for pre-processing queries, which is
grouped in the Query-Package shown on the left of Figure 6.3. The pre-processing includes
the import of queries from di↵erent sources (e.g., custom formats, text files, or databases), the
parsing of queries in di↵erent query languages, and the translation into an internal format.
EMF [7] is used for generating parsers for di↵erent query languages based on a model together
with a detailed textual description in concrete syntax.

1The cosine similarity is commonly used in the Vector Space Model of IR to calculate the distance between
two vectors. Given two documents d1 and d2, for which the similarity is to be determined, the cosine

similarity is defined as d
cosine

=
~

V (d1)⇤~V (d2)

|~V (d1)|⇤|~V (d2)|
[20].

55

6. Evaluation

Figure 6.3.: The main parts of the architecture of the system56

6.2. Overview

Furthermore, it allows the generation of the code for the internal query format based on a
model. This has the advantage that the model is well-defined and open for adaptation and
extension. The generated code, in total, comprises about 30,000 LOC.

During pre-processing, also, specific information necessary for matching has to be extracted
and made explicit (e.g., properties of the queries like ids and names of data sources queried).
For that reason, an abstract Visitor class (shown center-bottom in Figure 6.3) going through
the abstract syntax tree of a query has been developed. Thereby the extensibility of the query
format has been taken into account by using reflection (e.g., new operators in the abstract
query model would automatically be visited). Concrete implementations of the visitor serve
to extract the features or build the schemas, for example.

The recommendation framework, pictured on the left of Figure 6.3, has been built around the
AMC, the schema matching system available. For that a Wrapper has been developed that
accepts and matches sets of queries instead of two schemas. The adaptations include main
components of the AMC and were often done through inheritance (e.g., the establishment of
a query matcher hierarchy on top of that of the schema matchers). AMC-components are
drawn grey in the picture of the architecture.

The new system strongly reflects the architecture of the AMC. In particular, new query
matchers can be directly registered with the recommendation framework, such allowing for
easy extension. Nevertheless, the main advantage of the connection to the AMC is that the
e�ciently implemented schema matching infrastructure can be reused. Next to the e�cient
execution of several matchers in parallel (e.g., supported by the use of threading and caching),
the functionality provided for aggregation and selection represents a special advantage.

Through the AMC, there is also a number of existing schema matchers, which serve as
a basis for new matchers tailored to the query structure. The index-based processing of the
feature matcher was implemented using the Apache Lucene Search Engine Library [1]. Next
to the logarithmic search complexity, it provides customizable methods for the calculation of
similarity values.

Evaluation Framework

In order to enable a large-scale evaluation, the entire evaluation has been implemented in SQL
stored procedures and was executed directly on a MySQL database. The main advantages
are the direct connection to the data set, the results of the empirical study; the performance
gains (e.g., especially, the recording and reuse of intermediate results while evaluating schema
matcher combinations); and the availability of all data in a format suitable for further
analysis. For an exhaustive evaluation, large parts of the schema matching functionality
(e.g., the aggregation and selection of the results of individual schema matchers as well as
the combination of the element-level results) have been implemented in SQL, too (see the
corresponding SQL scripts in the Attachments A).

6.2.4. Threats of Validity

There are two main threats for validity which have to be considered with this evaluation.
First, the correctness of the implementation has to be regarded. Second, a more specific issue
concerning the preciseness of the calculation needs to be addressed.

57

6. Evaluation

In order to ensure the intended operation of the system di↵erent tests were performed.
For the pre-processing functionality for the queries implemented in Java, tests were defined
using JUnit [11]. Moreover, the implementation of the evaluation system has been validated
against the original evaluation functionality of the AMC. For that, several results of the
matching system were evaluated with both systems to compare the evaluations – by regarding
random samples. Similarly, the SQL implementation of the schema matching functionality
was tested by comparing its results to those of the AMC.

Further, the similarity calculation performed by Apache Lucene, which is used in the im-
plementation of the Feature Matcher performs a byte encoding/decoding of certain factors,
which leads to a loss in precision [12]. Since the over-all ranking is maintained, this does not
influence the Combined Matcher, which only applies the values for filtering. However, the
results of the Feature Matcher are sometimes – although, only marginally – influenced.

This section presented in detail the test data, experiment design, and architecture of the
system and covered issues of validity. The results of the evaluation of the system are given in
the next section.

6.3. Results

This section presents the results of the evaluation. The first section covers the configuration
and evaluation of the individual schema matchers as well as their combination. Next, the
quality of the Combined Matcher conceived in Chapter 5 is evaluated w.r.t. di↵erent aspects
of query recommendation accuracy and in comparison to di↵erent approaches. In particular,
the usage accuracy and the scalability of the combined approach are examined closer. Lastly,
the rating and ranking accuracy, two other aspects of query recommendation are regarded.

6.3.1. Configuration and Evaluation of Schema Matchers

In this section, the applicability of schema matchers for query matching and recommendation
is evaluated. For that, the best configuration for the individual matchers is derived, first.
It includes the best combination and selection threshold for each matcher. After a quality
comparison of the individual matchers, the best combination of matchers is presented, which
is applied within the Schema Matcher. Since the over-all goal of this work is query recom-
mendation, pr@5 is chosen as the most important measure for the evaluation23. Hence, the
parameter selection described in this section targets the optimization of this value.

For the computation of the result of a schema matcher, the match results on element level
need to be coerced into one value. Prior to the application of the schema similarity function,
ssim, the real element correspondencies are selected using the combination threshold, as
described in Chapter 5. Since the then computed value of the ssim-function determines the
similarity value of the corresponding queries, the MAE, which captures the preciseness of the
similarity value serves best to determine the combination threshold to be chosen. Recall that
the MAE captures the error (i.e., it describes the average deviation of the computed similarity

2Note that the presentation of three recommendations to a user might be a more reasonable concept, in reality.
Then, pr@3 should be optimized. However, this study considers pr@5 because the data sets always include
the original query and the SDSS data, in addition, contains several structural duplicates. In this regard,
pr@5 seems a more reasonable choice.

3Since pr@k is regarded within the evaluation, it has to be noticed that in some cases (i.e., if the reference set
contains less than k recommendations) a pr@k of 1 cannot be achieved.

58

6.3. Results

values from the reference values) and, hence, should be minimized.

Figure 6.4 exemplarily shows the development of MAE@5 and MAE@10 for di↵erent com-
bination thresholds for the Name Matcher. For both measures, there is a strong degression
until a combination threshold of 0.7. After that point, the curves decline more slightly. Note
that pr@5 has its peak at the combination threshold of 0.7 (not shown here). Therefore, it is
selected as aggregation threshold for the Name Matcher.

0 0.2 0.4 0.6 0.8

0.25

0.3

0.35

Comb.Threshold

MAE@5 MAE@10

Figure 6.4.: The dependence of the MAE from the combination threshold for the Name Matcher

Similarly, the best combination thresholds have been determined for all other schema matchers
and are shown in Table 6.4. Nearly all values are very high (i.e., greater or equal 0.7) apart
from those for the Type and Leaf Matcher. This is in accordance with the assumption of the
schema similarity function, which assumes element-pairs with similarity values greater than 0
to be real correspondencies.

Matcher Comb.Threshold Threshold

Name 0.7 0.4
W-Name 0.7 0.4
Path 0.9 0.2
Sibling 0.7 0.2
Type 0.0 0.7
Leaf 0.5 0.1
Parent 0.7 0.5
Children 0.8 0.0
T-Path 0.9 0.3

Table 6.4.: Configuration parameters for the schema matchers

In the right column, Table 6.4 gives the best selection thresholds for the individual schema
matchers. In contrast to the previously found combination thresholds, here, the Type Matcher
has the highest threshold with a value of 0.7. This is to be traced back to its processing. Since

59

6. Evaluation

data types mostly either match or not the combination threshold of 0 is chosen because a
higher threshold would not change the result.

The dependence of di↵erent measures regarding the threshold can be seen in Figure 6.5,
again, for the Name Matcher. The two charts also show that a threshold-selection focusing
on the measures precision, recall, and F-Measure (i.e., a consideration of the whole set of
recommendations) would lead to a di↵erent best-threshold of about 0.7. This indicates that
the precision for the current best-configuration decreases, if a larger set of recommendations
is regarded.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Threshold

pr@3 pr@5 pr@10

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Threshold

pr re
F1

Figure 6.5.: The influence of the Threshold selection for the Name Matcher using di↵erent thresholds

Figure 6.6 shows the final evaluation of the schema matchers configured with the parameters
specified in Table 6.4. In general, there is no significant di↵erence between the individual
matchers. Especially, with the Sibling and T-Path Matcher, the pr@5 is at 0.6; with the other
matchers, it is between 0.5 and 0.6.

Name W-Name Path Sibling Type Leaf Parent Children T-Path

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

pr@5 pr@10 pr@15

Figure 6.6.: The evaluation of the individual schema matchers regarding their usage accuracy

The good performance of the Sibling Matcher shows that its processing fits well with the
structure of the queries. Since most of the queries are not nested, their schemas usually consist

60

6.3. Results

of one operator level and one attribute/value level. Both levels are very homogeneous such
that the Sibling Matcher can achieve good results. As it is the case with pr@10 and pr@15,
which have very similar values for the di↵erent matchers, all other measurements not shown
here (e.g., precision and recall) do not di↵er significantly.

Regarding the combination of schema matchers, the combination of the W-Name, Leaf,
and Children Matcher turned out to achieve the best quality – having aggregated with the
Average Strategy and applied a selection threshold of 0.4. We considered all 511 possible
combinations of matchers and the best 30 combinations only included matchers of these three
kinds together with the Name Matcher. The di↵erences in the evaluation results for these
combinations were sometimes only marginal. Compared to other combinations (i.e., including
other matchers), however, the drop in quality made up about 5% for pr@5 and about 10% for
F -Measure, for example.

Note that the Leaf and Children Matcher both focus on comparing the attributes, which are
the parts most distinctive with di↵erent queries. The T-Path Matcher, in addition, includes
information about the query structure in its comparison. Thus, the best combination considers
two important kinds of information contained in the queries.

6.3.2. Evaluation of the Combined Matcher

This section covers the evaluation of the Combined Matcher presented in Chapter 5. A
preliminary evaluation turned out that it achieves best results with a filter-parameter of
n = 20. That means the Filter Matcher ranks the queries after calculating preliminary
similarity values and forwards the best 20 queries to the Schema Matcher. The latter
recalculates the similarity values for the 20 queries and the similarity values of the remaining
queries, which are not considered by the Schema Matcher, are set to 0.

Usage Accuracy

StringTextFeatureSchemaCombi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

pr@5 pr@10 pr@15

Figure 6.7.: The evaluation of the query matchers regarding their usage accuracy

It turned out that all approaches considered have a very similar performance considering
the top k recommendations. An overview of pr@5, pr@10, and pr@15 is given in Figure 6.7.
Though the similarity of the results, only the Schema Matcher and the Combined Matcher
achieve a pr@k greater than 0.6. The Feature Matcher shows a better quality than the baseline

61

6. Evaluation

approaches, but the di↵erences seem to be marginal; the values all are between 0.5 and 0.6.
This induces that with all matching approaches, about 50% of the top five recommendations
are real recommendations. Note that the values also resemble the results achieved by the
individual schema matchers, which were presented in Figure 6.6.

Nevertheless, the consideration of precision, recall and F -Measure shows di↵erences in the
matching performance of the di↵erent matchers. Although all of the latter find the real
recommendations, which is indicated by the high recall, their over-all matching performance
di↵ers strongly. With F -Measure values of 0.38, 0.47, and 0.56 for the Feature, Schema, and
Combined Matcher, respectively, the increase in the value makes up about 10%. With a
precision of 0.47, only the Combined Matcher is near 0.5. This indicates that it is the only
matcher where at least half of all recommendations determined are useful.

StringTextFeatureSchemaCombi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

pr re
F1

Figure 6.8.: The evaluation of the query matchers regarding their over-all matching performance

StringTextFeatureSchemaCombi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

pr re
F1

Figure 6.9.: The matching performance of the query matchers regarding the SDSS data set

If only the SDSS data set is considered, the advantage of the Combined Matcher is even
more evident. In comparison to the average F -Measure shown in Figure 6.9, for example, all
values drop by 25-50%. Only with the Combined Matcher there is a smaller decrease (of less

62

6.3. Results

than 10%); hence, its recommendation quality proves to be much more constant. The good
performance of the combined approach in contrast to the individual matchers indicates that
the filtering succeeds in filtering out queries that would be falsely matched by the schema
matching system. Moreover, the schema matching overcomes the very generous strategy of the
Feature Matcher, which achieves a high recall but a very low precision. It refines the rough
similarity calculation of the Feature Matcher and leads to a significant increase in precision
for the Combined Matcher.

Scalability

Next to the recommendation accuracy, the scalability of the recommendation system was
covered by the evaluation. The results are shown in Figure 6.10, which gives an overview
of the time the systems need for processing in dependence of the number of queries in the
systems. The data confirms the specifications of the complexity of the approaches, stated
previously.

0 50 100 150 200

0

500

1,000

1,500

Input Size

T
im

e
(m

s)

Combi Schema Feature Text

Figure 6.10.: The evaluation of the query matchers regarding their scalability

The curves of the two baseline approaches both develop rather steadily with only a slight
increase with growing input. Although it has to maintain the terms, the Text Matcher requires
less time than the String Matcher (not shown here). Using an index it achieves logarithmic
complexity.

Similarly using an index, the Feature Matcher shows the same development. However,
since it is based on the abstract representation of the queries, the pre-processing required
by the approach leads to a larger time in processing. Also the quadratic complexity of the
schema matchers is reflected by the time they need for processing, which even increases along
the quadratic parable. Finally, the Combined Matcher shows a logarithmic curve, too. Since
the filter-parameter, n, sets a bound for schema-matching, its complexity is based on the
indexing of the filtering.

Rating and Ranking Accuracy

Figure 6.11 shows the MAE of the Feature Matcher and the original version of similarity
computation based on Lucene and indexing all Features. The extensions clearly benefit

63

6. Evaluation

the computation since all MAE values are lower with applying them. In particular, the
MAE@5 decreases by about 30% of its value with the original computation. Further is to be
remarked that, for di↵erent MAE, the values stay constantly at about 0.2 with the extended
computation, whereas the original version shows variation in the value. This is because the
similarity calculation of the latter includes all features and, hence, behaves di↵erent and
becomes inaccurate if more queries are considered. Note that regarding other measurements,
the two approaches di↵er only slightly. This is because the extended similarity calculation
maintains the over-all ranking of the feature-based approach, but only has a refined choice of
values.

LuceneFeature

0.1

0.15

0.2

0.25

0.3

MAE@5 MAE@10 MAE@15

StringTextFeatureSchemaCombi

0.2

0.25

0.3

0.35

0.4

NDPM@5 NDPM@10

Figure 6.11.: The evaluation of the query matchers regarding their rating (left) and ranking accuracy
(right)

In contrast to the MAE, which measures the absolute di↵erence in values, the NDPM serves
better to regard the e↵ectiveness of the similarity computation. In essence, it shows if the
reference ranking is maintained by counting pairs of queries which are ranked invertedly
compared to the reference ranking. Hence, a small NDPM value implies a better reflection of
the reference ranking.

Figure 6.11(right), again, shows that the Combined Matcher performs better if a larger
set of queries is considered – now, for the SQL Tutorial data. A fact reproduced even more
clearly with a k > 10 (not shown here). Consequently, the similarity calculation of the
Combined Matcher does not only succeed in averagely reflecting the similarity values of
the reference set, which is shown by the low MAE, but also maintains the relation between
individual similarity values in the data set.

Note that details for the MAE values are not given here, because all ranging between
0.15 and 0.3, they do not di↵er strongly for the di↵erent matchers. The only significant remark
to be made in that context is that especially the text seach based on TF-IDF always achieves
an MAE of below 0.2, and, hence, performs better than all other approaches having values
between 0.2 and 0.3.

The results presented in this section raise several issues regarding the di↵erent matching
approaches. For that reason, the results are summarized and discussed, next.

64

6.4. Summary and Discussion

6.4. Summary and Discussion

This section gives a summary of the results presented above and discusses them, subsequently.
Thereby, both the evaluation of the schema matchers as well as the performance of the
Combined Approach is considered.

6.4.1. Summary

The configuration and evaluation of the schema matchers included the following items:

• The configuration of the individual schema matchers by finding the best combination
and selection threshold for each matcher

• The evaluation of the individual schema matchers regarding the query recommendation
accuracy

• The finding of the best combination of schema matchers

The evaluation shows that the results of the traditional schema matchers do not di↵er strongly
and are very similar for the two data sets of rather di↵erent domains. Moreover, the similarity
in performance is shown by regarding di↵erent measures for the usage, rating, and ranking
accuracy. Nevertheless, based on an exhaustive evaluation of all possible combinations, a
specific selection of matchers was proposed as best combination. It consists of the W-Name,
Leaf, and Children Matcher. Hence, for matching, this combination considers both the
structure of the queries as well as the attributes and values contained in it.

The evaluation of the Combined Matcher addressed its query recommendation performance
by considering several points:

• The comparison of the two new approaches, the Feature and Schema Matcher, to the
baseline approaches

• The evaluation of the Combined Matcher regarding usage accuracy and scalability

• The consideration of the rating and ranking accuracy

According to the evaluation of the usage accuracy, the matchers considered achieve comparable
results regarding the goal of providing a set of query recommendations. In contrast, the
consideration of a larger set of queries, which amounts to the comparison of the real query
matching performance clearly shows the dominance of the Feature and Schema Matcher
over the baseline approaches and that the Combined Matcher outperforms all others. The
usage accuracy thereby was determined based on the three measures precision, recall, and
F -Measure, which are commonly used in the matching domain. The scalability evaluation
shows that the processing time of the Combined Matcher develops logarithmic in dependence
of the number of queries in the system. This is mainly due to the bound on the queries to be
compared by the Schema Matcher, which is set with the filter parameter n = 20.

Lastly, the rating and ranking accuracy, two important points to be considered with rec-
ommendation, were regarded. The MAE of the Combined Approach does not provide any
improvement over this of the baseline approaches. However, it is rather low, in general. Fur-
ther, the ranking defined by the reference set is maintained in most cases, which is shown by
the low NDPM values. Especially, the Combined Matcher succeeds in reflecting the reference
ranking w.r.t. a larger set of then usually more heterogeneous queries.

65

6. Evaluation

6.4.2. Discussion

Although the evaluation is based on an empirically-retrieved data set and contains an exhaus-
tive number of test cases, it has to be regarded critically w.r.t. the test data. Mainly, for two
reasons: First, the data sets do not fulfill all requirements specified in the beginning of this
chapter. Second, the actual goal of remix, the recommendation of queries from reports, is not
specifically considered.

The data sets were shown to fulfill the major criteria in order to reflect the requirements
of remix. Specifically, the queries in the SDSS data set are of adequate complexity, show
variability, and are available in large numbers. However, the complexity of the queries cannot
be exploited entirely, since queries too complex to be grasped by the participants were filtered
out for the empirical study. Further, the interoperability required by remix – especially, the
acceptance of queries in di↵erent query languages – is not covered by the data sets, which
contain only SQL queries. Also, the similarity values retrieved in the empirical study are
assumed to be wrong in some cases.

On the other hand, remix is introduced as reporting tool in the introduction. However,
queries extracted of real reports are not contained in the test data. But being often tool-
generated and very long or addressing special BI data, these queries are rather specific. Hence,
the consideration of general SQL queries is to be regarded critically considering the reporting
context of remix.

Nevertheless, the Combined Matcher has been designed w.r.t. the criteria defined in Chapter
3. It includes an abstract representation to meet the interoperability requirement and applies
schema matching, which should produce even better results with multiply nested queries.
Hence, it can be concluded that the evaluation presented in this chapter showed the applica-
bility and advantages of the combined approach for query matching, conceived in Chapter 5.
However, the specific performance in a reporting environment should be determined with the
additional, more specific data sets.

66

7. Conclusion And Future Work

This chapter summarizes the presented work. In addition, it outlines extensions of the
evaluation and discusses improvements of the combined matching approach as directions of
future research.

7.1. Conclusion

Over time, a reporting system is used to create a considerable amount of reports, which
contain queries. If this information is collected, a valuable knowledge base originates. To date,
however, this knowledge is rarely used further. Therefore, this work studied content-based
query recommendation, the recommendation of existing queries based on a calculation of
similarities between the queries.

For this purpose, the problem of content-based query recommendation was analyzed in
detail, which, in large parts, amounted to a study of query matching approaches. A classi-
fication for the latter was developed in the preparation of the subject, based on the basic
classification of schema matching proposed by Rahm and Bernstein [70].

As a major contribution, this thesis presented a content-based approach of query recom-
mendation based on a combination of two di↵erent matching techniques in the Combined
Matcher, similarity search using semantic features and schema matching. The system devel-
oped fulfills the requirements of the target reporting system, remix, given in Chaper 3. Due to
its independence of specific query formats and languages it can be easily integrated in remix;
the required interoperability provided by the Combined Matcher is a feature not supported
by existing systems. Also, its processing time was shown to be kept in reasonable limits w.r.t.
the amount of queries in the system, in the evaluation – a logarithmic dependence is achieved
by limiting the number of queries to be processed by the schema matchers by filtering them
in advance. Regarding the over-all goal, the recommendation of a certain number of queries,
the restriction of the set of recommendations is necessary, anyway.

Further, the evaluation showed that the quality of the Combined Matcher outperforms
that of baseline approaches like string comparison and text search and provides better results
than the feature-based matching and schema matchers applied individually. Especially, regard-
ing one of the most important criteria, the usage accuracy. The values of pr@5 and F -measure
are about 10-20% better than those of the baseline matchers, which was demonstrated with
test data from di↵erent domains.

The empirical evaluation conducted in this study, represents the second main contribu-
tion of this work. Since adequate test data (i.e., a set of real-world queries where the similarity
of the queries has been rated by real persons) for query recommendation did not exist prior
to this study [61], an empiricial study was conducted to retrieve similarity ratings by real
persons. This study led to a test data set of 150 queries with detailed values (i.e., in the
interval of [0..1]) for the similarity of all 22,500 query-pairs.

67

7. Conclusion And Future Work

In the course of the evaluation, particular interest was laid to the applicability of schema
matching for query recommendation. Although it was shown that the potential of several
individual schema matchers could not be exploited specifically in most cases, their combination
turned out to deliver better recommendations in comparison to the baseline approaches. In
particular, if the number recommendations to be provided is larger. Since this balance of
correctness and completeness is exactly that what makes a good matching approach, in general,
schema matching represents a useful technique for matching queries. Moreover, its scalability
issues were solved in this thesis with the proposal of the Combined Matcher.

Nevertheless, a critical consideration of the evaluation results pointed out that the focus of
remix, which is on reporting, should be considered more specifically. Next to that, there are
various other directions left for future work.

7.2. Future Work

The study of query matching and the development of the Combined Matcher revealed certain
fields which would be worth further study. Refinements on conceptual and implementational
level could lead to more precise recommendations and a more specific evaluation would
reveal more details about the application benefits. These issues are covered in this section as
directions of future research.

Reporting The Combined Matcher conceived in this thesis should be evaluated with queries
extracted from reports. These queries are usually nested and considerably longer than
the queries considered in this study, which have a maximal length of 82 words. An
example is shown in Listing 7.2. Further, report queries target BI data and are often
multidimensional. Such a data set also needs similarity values for the di↵erent query
pairs. In this context, a study as the one conducted in this work is not appropriate
since the queries are too long and complex to be grasped by participants with basic
SQL knowledge in a reasonable amount of time. Hence, a new concept for the retrieval
of similarity values has to be developed, in addition.

Multidimensional Queries With the focus on collaborative approaches instead of content-
based techniques, the processing of recommender systems di↵ers from query matching, in
general. However, having similar goals, the concepts studied in the field of recommender
systems should be examined closer w.r.t. their applicability for query matching. In
particular, there are several recommender systems targeting multidimensional queries,
which have not been considered in this work. In that context, The rather basic content-
based methods applied in recommender systems (e.g., methods based on string similarity
[61]) could provide a starting point for matching multidimensional queries.

Test Data Generation The construction of generation engines represents one approach
to come to a set of test data. However, a valid data set needs to be based on real
world queries and real world ratings. Therefore, algorithms would need to be conceived
that include such information. Given an empirically retrieved subset of the necessary
similarity values as starting point, machine learning could be applied, for example, to
generate the remaining values. Nevertheless, the validity of such a data set would need
to be evaluated separately (i.e., if the transfer of similarity values based on predefined
characteristics, which are exploited by the machine learners, complies with the perception
of similarity of real persons).

68

7.2. Future Work

Clustering The equality-based comparison of the Feature Matcher provides an e↵ective filter;
but in several cases it might turn out to be too restrictive; especially, in a heterogeneous
environment. For that, other comparison possibilities should be evaluated. An approach
based on clustering would be one possibility. The clustering of features with very
similar values (e.g., attributes sales and totalsales) could establish a similarity between
queries, which is not recognized by the current approach during filtering. However, the
major open issue in this context is how to integrate the clustering with the index-based
comparison.

Schema Matchers This work evaluated several traditional schema matchers as well as
combinations of them w.r.t. query matching. Nevertheless, there are several issues to
be regarded closer including the configuration of the matchers (e.g., one could evaluate
further aggregation strategies) as well as their selection (e.g., other kinds of matchers
like, for example, matchers based on machine learning could be considered). Since the
application of schema matching turned out to be beneficial for query matching, these
points should be considered in future work.

Query Semantics The classification proposed in this work mentioned query semantics as
important source of information. In the Combined Matcher, however, the semantics are
only applied for creating an abstract representation. Therefore, the impact of applying
semantic methods should be examined closer. There is a lot of theoretic work on the
similarity of queries regarding their semantics (e.g., the problem if two queries have
overlapping result sets). The application of semantic methods might be of particular
advantage if the ranking of recommendations is to be refined or the queries available for
recommendation are all syntactically very similar.

SELECT
(SUM(dbo .V ADRM IMS FCT.ADRM FORECAST FC CURR)) /1000 ,
dbo .V ADRM IMS FCT.CAL YEAR,
dbo .V ADRM IMS FCT.CAL QTR,
dbo .V ADRM IMS FCT.CUSTOMER DESC,
dbo .MASTER CODE DIM. master code desc ,
(SUM(dbo .V ADRM IMS FCT.ESTIMATED IN FC CURR)) /1000 ,
(SUM(dbo .V ADRM IMS FCT.COMMITTED FC CURR)) /1000 ,
(SUM(dbo .V ADRM IMS FCT.PROBABLE FC CURR)) /1000 ,
(SUM(dbo .V ADRM IMS FCT.UPSIDE FC CURR)) /1000 ,
Closing DATE DIM . day date ,
dbo .REGION DIM. Globa l country desc ,
CASE WHEN (dbo .REGION DIM. l e v e l 0 2 c od e = ’NA’)THEN ’NA’ WHEN (dbo .

REGION DIM. l e v e l 0 2 c od e = ’LA’)THEN ’LA’ ELSE dbo .REGION DIM.
l e v e l 0 3 c od e END,

CASE
WHEN
dbo .V ADRM IMS FCT.PROBABLE FC CURR IS NULL AND dbo .V ADRM IMS FCT.

COMMITTED FC CURR IS NULL THEN 0
WHEN
dbo .V ADRM IMS FCT.PROBABLE FC CURR IS NULL THEN dbo .V ADRM IMS FCT.

COMMITTED FC CURR/1000

To be continued on the next page.

69

7. Conclusion And Future Work

ELSE dbo .V ADRM IMS FCT.PROBABLE FC CURR/1000 END,
SUM(dbo .V ADRM IMS FCT.COMMITTED FC CURR) ,
SUM(dbo .V ADRM IMS FCT.PROBABLE FC CURR)

FROM
dbo .REGION DIM INNER JOIN dbo .V ADRM IMS FCT ON (dbo .V ADRM IMS FCT.

REGION KEY=dbo .REGION DIM. reg ion key)
INNER JOIN dbo .DATE DIM Closing DATE DIM ON (dbo .V ADRM IMS FCT.

CLOSING DATE KEY=Closing DATE DIM . date key)
INNER JOIN dbo .ACCOUNT DIM ON (dbo .V ADRM IMS FCT.ACCOUNTKEY=dbo .

ACCOUNT DIM. account key)
INNER JOIN dbo .MASTER CODE DIM ON (dbo .V ADRM IMS FCT.MASTERCODEKEY=

dbo .MASTER CODE DIM. master code key)
WHERE

(
dbo .V ADRM IMS FCT.CAL YEAR IN (2011)
AND
dbo .V ADRM IMS FCT.CAL QTR IN (2)
AND
CASE WHEN (dbo .REGION DIM. l e v e l 0 2 c od e = ’NA’)THEN ’NA’ WHEN (dbo .

REGION DIM. l e v e l 0 2 c od e = ’LA’)THEN ’LA’ ELSE dbo .REGION DIM.
l e v e l 0 3 c od e END IN (’AP’ , ’DACH’ , ’EMEA’ , ’ JP ’ , ’LA’ , ’NA’)

AND
dbo .ACCOUNT DIM. account desc IN (’ Software revenue ’)
AND
CASE

WHEN
dbo .V ADRM IMS FCT.PROBABLE FC CURR IS NULL AND dbo .V ADRM IMS FCT.

COMMITTED FC CURR IS NULL THEN 0
WHEN
dbo .V ADRM IMS FCT.PROBABLE FC CURR IS NULL THEN dbo .V ADRM IMS FCT.

COMMITTED FC CURR/1000
ELSE dbo .V ADRM IMS FCT.PROBABLE FC CURR/1000 END >= 1
)

GROUP BY
dbo .V ADRM IMS FCT.CAL YEAR,
dbo .V ADRM IMS FCT.CAL QTR,
dbo .V ADRM IMS FCT.CUSTOMER DESC,
dbo .MASTER CODE DIM. master code desc ,
Closing DATE DIM . day date ,
dbo .REGION DIM. Globa l country desc ,
CASE WHEN (dbo .REGION DIM. l e v e l 0 2 c od e = ’NA’)THEN ’NA’ WHEN (dbo .

REGION DIM. l e v e l 0 2 c od e = ’LA’)THEN ’LA’ ELSE dbo .REGION DIM.
l e v e l 0 3 c od e END,

CASE
WHEN
dbo .V ADRM IMS FCT.PROBABLE FC CURR IS NULL AND dbo .V ADRM IMS FCT.

COMMITTED FC CURR IS NULL THEN 0
WHEN
dbo .V ADRM IMS FCT.PROBABLE FC CURR IS NULL THEN dbo .V ADRM IMS FCT.

COMMITTED FC CURR/1000
ELSE dbo .V ADRM IMS FCT.PROBABLE FC CURR/1000 END,
dbo .V ADRM IMS FCT.OPPORTUNITY ID,
dbo .ACCOUNT DIM. account desc ;

Code Listing 7.1: An example report query

70

A. Appendix

Query for Test Data

SELECT TOP 1000 MIN(seq) AS seq , statement
FROM SqlLog
WHERE e r r o r=0
AND dbname=’BESTDR8’
AND yy=datepart (yy , getdate ()) and mm=(datepart (mm, getdate ()) 3)
AND statement not l i k e ’%CREATE%’
AND statement not l i k e ’% i n s e r t i n to%’
AND statement not l i k e ’%ALTER TABLE%’
AND statement not l i k e ’%exec%’
AND statement not l i k e ’%drop%’
AND statement not l i k e ’% s e t @%’
AND statement not l i k e ’%dec l a r e %’
AND statement not l i k e ’% c r o s s apply %’
AND c l i e n t IP not in
(SELECT c l i e n t IP
FROM SqlLog
WHERE e r r o r=0
AND yy=datepart (yy , getdate ()) and mm=(datepart (mm, getdate ()) 3)
GROUP BY c l i e n t IP
HAVING count (⇤)>100)
GROUP BY statement ;

Code Listing A.1: The query used to retrieve the queries for the SDSS data set (extracted June 6,
2012)

SQL Scripts of the Evaluation

#aggregate . s q l
#aggrega te s the r e s u l t s o f the m ind i v i dua l schema matchers
#(conta ined in tab l e ‘ r e su l tdb ‘ . ‘ sm matcher ‘)
#f o r a l l (2ˆn) 1 p o s s i b l e combinat ions

#s i z e o f the r e s u l t o f every matcher
SET @rcount = (SELECT SUM(sm resu l t count (‘ id ‘)) FROM ‘ param src ‘) ;
#num of aggs cons ide r ed
SET @acount = (SELECT COUNT(⇤) FROM ‘ param agg ‘) ;

d e l im i t e r
CREATE PROCEDURE in i t v iew sm matcher ()
BEGIN
CREATE OR REPLACE VIEW ‘ sm matcher ‘ AS
SELECT id 1 AS id , ‘ id ‘ AS or i g i d , ‘ matcher ‘ FROM ‘ resu l tdb ‘ . ‘ sm matcher ‘ ;
END

71

APPENDIX

d e l im i t e r
CREATE PROCEDURE in i t t ab l e sm comb i ()
BEGIN
DROP TABLE IF EXISTS ‘ sm combi ‘ ;

CREATE TABLE ‘ sm combi ‘ (
‘ id ‘ sma l l i n t (6) NOT NULL,
‘ matcherids ‘ varchar (30) NOT NULL,
PRIMARY KEY (‘ id ‘)
) ;

INSERT INTO ‘ sm combi ‘ (‘ id ‘ , ‘ matcherids ‘)
VALUES (0 , ’ ’) ;
END

de l im i t e r
CREATE PROCEDURE in i t t ab l e sm combi agg (c id i n t)
BEGIN
#current aggid and counter
DECLARE agg i n t DEFAULT 0 ;
DECLARE ac i n t DEFAULT 0 ;
DECLARE done i n t DEFAULT FALSE;
DECLARE acur CURSOR FOR (SELECT ‘ id ‘ FROM ‘ param agg ‘) ;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

DROP TABLE IF EXISTS ‘ sm combi agg ‘ ;

CREATE TABLE ‘ sm combi agg ‘ (
‘ id ‘ i n t (11) NOT NULL,
‘ combiid ‘ sma l l i n t (6) DEFAULT NULL,
‘ source id ‘ sma l l i n t (6) NOT NULL,
‘ aggid ‘ sma l l i n t (6) NOT NULL,
‘ sqid ‘ i n t (11) NOT NULL,
‘ tqid ‘ i n t (11) NOT NULL,
‘ se id ‘ i n t (11) NOT NULL,
‘ te id ‘ i n t (11) NOT NULL,
‘ s im i l a r i t y ‘ f l o a t (5 . 4) NOT NULL,
‘ count ‘ sma l l i n t (6) NOT NULL,
PRIMARY KEY (‘ id ‘)
) ;

#now i n s e r t an entry f o r a l l d i f f q q e e pa i r s
#as i n i t f o r dummy combi c id=0 and every agg
OPEN acur ;

agg loop : LOOP
FETCH acur INTO agg ;

IF done THEN LEAVE agg loop ;
END IF ;

INSERT INTO ‘ sm combi agg ‘
(‘ id ‘ , ‘ combiid ‘ , ‘ source id ‘ , ‘ aggid ‘ , ‘ sq id ‘ , ‘ tq id ‘ ,
‘ s e id ‘ , ‘ t e id ‘ , ‘ s im i l a r i t y ‘ , ‘ count ‘)

72

APPENDIX

(SELECT ‘ id ‘+ac⇤@rcount , c id , ‘ source id ‘ , agg , ‘ sqid ‘ , ‘ tq id ‘ ,
‘ s e id ‘ , ‘ t e id ‘ , 0 , 0
FROM ‘ sm resu l t ‘ #take f i r s t s e t o f r e s u l t tab
WHERE id <= @rcount) ;

SET ac = ac+1;
END LOOP;
CLOSE acur ;
END

de l im i t e r
CREATE PROCEDURE crea t e tab l e tmp ()
BEGIN
DROP TABLE IF EXISTS ‘tmp ‘ ;

CREATE TABLE ‘tmp ‘ (
‘ id ‘ i n t (11) NOT NULL AUTO INCREMENT,
‘ source id ‘ sma l l i n t (6) NOT NULL,
‘ sqid ‘ i n t (11) NOT NULL,
‘ tqid ‘ i n t (11) NOT NULL,
‘ se id ‘ i n t (11) NOT NULL,
‘ te id ‘ i n t (11)NOT NULL,
‘ s im i l a r i t y ‘ f l o a t (5 , 4) NOT NULL,
PRIMARY KEY (‘ id ‘)
) ;
END
#m i s o r i g i d ,
#put r e s u l t in tmp and s e l e c t with g iven parameters
d e l im i t e r
CREATE PROCEDURE se l e c t sm r e su l t t o tmp (m int , t f l o a t , d f l o a t , n i n t)
BEGIN

DELETE FROM ‘tmp ‘ WHERE ‘ id ‘>0;

INSERT INTO ‘tmp ‘
(‘ id ‘ , ‘ source id ‘ , ‘ sq id ‘ , ‘ tq id ‘ , ‘ s e id ‘ , ‘ t e id ‘ , ‘ s im i l a r i t y ‘)

SELECT CASE WHEN MOD(‘ id ‘ , @rcount) = 0 THEN @rcount
ELSE MOD(‘ id ‘ , @rcount) END, ‘ source id ‘ , ‘ sq id ‘ , ‘ tq id ‘ , ‘ s e id ‘ , ‘ t e id ‘ ,
CASE WHEN ‘ s im i l a r i t y ‘< t THEN 0 ELSE ‘ s im i l a r i t y ‘ END AS ‘ s im i l a r i t y ‘

FROM ‘ sm resu l t ‘ WHERE ‘ matcherid ‘=m;

#other s e l e c t i o n s t r a t e g i e s would be app l i ed here . . .
END

de l im i t e r
CREATE PROCEDURE sm aggregate (combine bool)
BEGIN
#current matcher and count o f matchers cons ide r ed
DECLARE m in t DEFAULT 0 ;
DECLARE mc in t DEFAULT 0 ;
#counter to i n s e r t data in po r t i on s
DECLARE c in t DEFAULT 0 ;
DECLARE cc i n t DEFAULT 0 ;
#params to s e l e c t o r i g i n a l match r e s u l t s

73

APPENDIX

DECLARE o in t DEFAULT 0 ;
DECLARE mco f l o a t DEFAULT 0 ;

CALL in i t v iew sm matcher () ;
CALL in i t t ab l e sm comb i () ;
CALL in i t t ab l e sm combi agg (0) ;
CALL crea t e tab l e tmp () ;
SET mc = (SELECT COUNT(⇤) FROM ‘ sm matcher ‘) ;
SET m = 0 ;
SET @cid = 0 ;

#f o r each matcher
m loop : LOOP

IF m = mc THEN LEAVE m loop ;
END IF ;
#put a l l r e s u l t s (f o r a l l s ou r c e s at once !) in tmp view
SET o = (SELECT ‘ o r i g i d ‘ FROM ‘ sm matcher ‘ WHERE ‘ id ‘=m) ;
#id o f combi with only that matcher
SET mco = POW(2 ,m) ;

#s e l e c t i o n
SET @t=0, @d=0, @n=0;
IF combine THEN SET @t = be s t agg t (m) ;
END IF ;
CALL s e l e c t sm r e su l t t o tmp (m, @t , @d, @n) ;

#c r ea t e new combis by extending a l l e x i s t i n g
INSERT INTO ‘ sm combi ‘ (‘ id ‘ , ‘ matcherids ‘)

(SELECT @cid := @cid+1, CONCAT(‘ matcherids ‘ ,m, ’ , ’) FROM ‘ sm combi ‘) ;

#add matcher r e s u l t to c r e a t e new combinat ions
########################### AVG
#fo r each combi a l r eady aggregated
SET c = 0 ;

c l oop : LOOP

IF c = mco THEN LEAVE c loop ;
END IF ;

#o f f s e t o f combis be f o r e + 1 (we have no o f f s e t f o r other aggs at the
moment) = s t a r t id o f cur rent combi

SET @caggstart = c⇤@acount⇤@rcount+1;
SET @caggend = @caggstart+@rcount 1 ;

INSERT INTO ‘ sm combi agg ‘
(‘ id ‘ , ‘ combiid ‘ , ‘ source id ‘ , ‘ aggid ‘ , ‘ sq id ‘ , ‘ tq id ‘ , ‘ s e id ‘ , ‘ t e id ‘ ,
‘ s im i l a r i t y ‘ , ‘ count ‘)

#@rcount ⇤(a . combiid+mco) i s o f f s e t to get i n to r e s u l t range o f the combi
SELECT tmp . id+@acount⇤@rcount ⇤(a . combiid+mco) ,
#combiid+matcherid in dec i s new combiid
a . combiid+mco ,
a . ‘ source id ‘ , a . ‘ aggid ‘ , a . ‘ sq id ‘ , a . ‘ tq id ‘ , a . ‘ s e id ‘ , a . ‘ t e id ‘ ,

74

APPENDIX

a . ‘ s im i l a r i t y ‘+tmp . ‘ s im i l a r i t y ‘ ,
a . ‘ count ‘+SIGN(tmp . ‘ s im i l a r i t y ‘)
FROM
(SELECT ⇤
FROM ‘ sm combi agg ‘
i s same as : ‘ combiid ‘=c AND ‘ agg ‘ LIKE ’AVG’ (a l l s ou r c e s at a time !)
WHERE id>=@caggstart AND id<=@caggend) a
#we cannot p r e s e l e c t s im i l a r i t y here , because we must i n s e r t a l l va lue s
JOIN ‘tmp ‘ tmp
ON tmp . ‘ id ‘=a . ‘ id ‘ @caggstart+1;

SET c = c+1;
END LOOP;
SET m = m+1;
END LOOP;
#post p roce s s va lue s
SET c = 1 ;
SET cc = (SELECT MAX(id) FROM ‘ sm combi ‘) ;
c l oop : LOOP

IF c > cc THEN LEAVE c loop ;
END IF ;

SET @star t id = c⇤@acount⇤@rcount+1;

UPDATE ‘ sm combi agg ‘
SET
‘ s im i l a r i t y ‘ = ‘ s im i l a r i t y ‘ / ‘ count ‘
WHERE ‘ count ‘ > 0
AND ‘ id ‘ >= @star t id AND id < @star t id+@acount⇤@rcount ;

SET c = c+1;
END LOOP;
END

#CALL sm aggregate (t rue)

#combine . s q l
#combines the element l e v e l r e s u l t s o f schema matcher (s)
#(conta ined in tab l e > s p e c i f y !)
#to one ov e r a l l va lue

#counts sm Result s i z e (=on element l e v e l)
SET @rcount = (SELECT SUM(sm resu l t count (‘ id ‘)) FROM ‘ param src ‘) ;
#counts Source s i z e (=on query l e v e l)
#get s i z e over i d s because i s index column . same would be count (⇤)
SET @scount = (SELECT SUM(count ⇤(count+1)/2)
FROM (SELECT MAX(id) MIN(id)+1 AS count FROM ‘ query ‘ GROUP BY ‘ source id ‘)

) ;
#count o f aggs cu r r en t l y cons ide r ed in sm combi agg
SET @acount = (SELECT COUNT(⇤) FROM ‘ param agg ‘) ;
#nbr o f th r e sho l d s used f o r computing combined schema sim
SET @tcount = 10 ;

d e l im i t e r
CREATE PROCEDURE cr ea t e t ab l e sm comb i r e su l t ()

75

APPENDIX

BEGIN
DROP TABLE IF EXISTS ‘ sm combi result ‘ ;

CREATE TABLE ‘ sm combi result ‘ (
‘ id ‘ i n t (11) NOT NULL,
‘ combiid ‘ sma l l i n t (6) NOT NULL,
‘ aggid ‘ sma l l i n t (6) NOT NULL,
‘ aggthresho ld ‘ f l o a t (4 , 3) NOT NULL,
‘ source id ‘ sma l l i n t (6) NOT NULL,
‘ sqid ‘ i n t (11) NOT NULL,
‘ tqid ‘ i n t (11) NOT NULL,
‘ s im i l a r i t y ‘ f l o a t (5 , 4) NOT NULL,

PRIMARY KEY (‘ id ‘)
) ;
END

de l im i t e r
CREATE FUNCTION comb ined s im i l a r i t y (s t a r t i d int , endid int , t f l o a t ,
sqec int , tqec i n t)
RETURNS f l o a t
BEGIN

SET @av=0,@sems=0,@tems=0;

SET @ = (SELECT 0 FROM
(SELECT @av :=AVG(‘ s im i l a r i t y ‘) ,@sems:=COUNT(DISTINCT ‘ se id ‘) ,

@tems:=COUNT(DISTINCT ‘ te id ‘)
FROM (SELECT ⇤ FROM resu l tdb . sm re su l t

WHERE ‘ id ‘ >= s t a r t i d and ‘ id ‘ <= endid) sqtqmapping
WHERE ‘ s im i l a r i t y ‘>0 AND ‘ s im i l a r i t y ‘>=t)) ;

#i s the case i f no sim i s > 0
IF @av IS NULL THEN SET @av = 0 ,@sems = 0 ,@tems = 0 ;
END IF ;

RETURN @av ⇤ (@sems+@tems) /(sqec+tqec) ;
END

de l im i t e r
CREATE PROCEDURE combine (c id int , agg int , ac int , s r c int , qc int ,
s q o r i g int , sqec int , t q o r i g int , tqec int , s t a r t i d int , endid int ,
eva l boolean , t f l o a t (4 , 3))
BEGIN

DECLARE v f l o a t (5 , 4) DEFAULT 0 ;
DECLARE id i n t (11) DEFAULT 0 ;

SET v = comb ined s im i l a r i t y (s t a r t i d , endid , t , sqec , tqec) ;
SET id = (ac⇤@scount) + qc ;
INSERT INTO ‘ sm combi result ‘
(‘ id ‘ , ‘ combiid ‘ , ‘ aggid ‘ , ‘ aggthresho ld ‘ , ‘ source id ‘ , ‘ sq id ‘ , ‘ tq id ‘ , ‘

s im i l a r i t y ‘)
VALUES
(id , c id , agg , t , s rc , sqor ig , tqor ig , v) ;

76

APPENDIX

END

#sr c param only to i n s e r t i t in r e s u l t t ab l e
d e l im i t e r
CREATE PROCEDURE se l e c t comb ine (c id int , agg int , ac int , s r c int ,
qc int , s q o r i g int , sqec int , t q o r i g int , tqec int , s t a r t i d int , endid int

,
eva l boolean)
BEGIN

DECLARE v f l o a t (5 , 4) DEFAULT 0 ;
DECLARE t f l o a t (4 , 3) DEFAULT 0 ;
DECLARE id i n t (11) DEFAULT 0 ;

IF @tcount>1 THEN SET t=0;
ELSE SET t =0.5 ;
END IF ;

t l o op : LOOP

IF t > 0 .9 THEN LEAVE t l oop ;
END IF ;

SET v = comb ined s im i l a r i t y (s t a r t i d , endid , t , sqec , tqec) ;

IF eva l THEN SET id = (ac⇤@scount⇤@tcount) + t ⇤10⇤@scount + qc ;
ELSE SET id = ((cid 1) ⇤@acount⇤@scount⇤@tcount)+(ac⇤@scount⇤@tcount) + t

⇤10⇤@scount + qc ;
END IF ;

INSERT INTO ‘ sm combi result ‘
(‘ id ‘ , ‘ combiid ‘ , ‘ aggid ‘ , ‘ aggthresho ld ‘ , ‘ source id ‘ ,
‘ sq id ‘ , ‘ tq id ‘ , ‘ s im i l a r i t y ‘)
VALUES
(id , c id , agg , t , s rc , sqor ig , tqor ig , v) ;

IF @tcount = 1 THEN LEAVE t l oop ;
END IF ;
SET t = t +0.1;
END LOOP;
END

de l im i t e r
CREATE PROCEDURE combine sm resu l t (combine boolean , eva l tab varchar (45) ,

t eva l t ab varchar (45))
BEGIN
#loop params
DECLARE eva l boolean DEFAULT (eva l tab IS NOT NULL) ;

DECLARE c id sma l l i n t (6) DEFAULT 0 ;
DECLARE agg sma l l i n t (6) DEFAULT 0 ;
DECLARE s r c sma l l i n t (6) DEFAULT 0 ;
DECLARE sqo r i g i n t (11) DEFAULT 0 ;
DECLARE tqo r i g i n t (11) DEFAULT 0 ;
DECLARE sqecount i n t (11) DEFAULT 0 ;
DECLARE tqecount i n t (11) DEFAULT 0 ;

77

APPENDIX

DECLARE tq s t a r t i n t (11) DEFAULT 0 ;
DECLARE tqend i n t (11) DEFAULT 0 ;
DECLARE s t a r t i d i n t (11) DEFAULT 0 ;
DECLARE endid i n t (11) DEFAULT 0 ;

DECLARE ac i n t DEFAULT 0 ;
DECLARE qc i n t DEFAULT 1;#counts i d s ! !

DECLARE done i n t DEFAULT FALSE;
DECLARE ccur CURSOR FOR (SELECT ‘ id ‘ FROM evaldb . ‘ sm combi ‘) ;
DECLARE acur CURSOR FOR (SELECT ‘ id ‘ FROM ‘ param agg ‘) ;
DECLARE qcur CURSOR FOR (
SELECT ⇤ ,

@tqend+1 AS t s t a r t , @tqend := @tqend+secount ⇤ tecount AS tend
FROM

(SELECT s . ‘ source id ‘ ,
s . ‘ o r i g i d ‘ AS so r i g , s . ‘ ecount ‘ AS secount ,
t . ‘ o r i g i d ‘ AS to r i g , t . ‘ ecount ‘ AS tecount

FROM ‘ query ‘ s
JOIN ‘ query ‘ t
USING (‘ source id ‘)
WHERE s . ‘ o r i g i d ‘ <= t . ‘ o r i g i d ‘
ORDER BY s . ‘ source id ‘ DESC, s . ‘ o r i g i d ‘ , t . ‘ o r i g i d ‘)

) ;
#we can de c l a r e only one event handler , so r e s e t i t a f t e r events
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

IF eva l THEN
CALL c r e a t e t a b l e e v a l (eva l tab) ;
END IF ;

CALL c r e a t e t ab l e sm comb i r e su l t () ;

OPEN ccur ;
combi loop : LOOP
FETCH ccur INTO c id ;
IF done THEN LEAVE combi loop ;
END IF ;

IF c id=0 OR (combine=FALSE AND MOD(LOG2(c id) ,1)>0) THEN ITERATE
combi loop ;

END IF ;

#s t a r t id o f that combi ’ s rows
#th i s s t a r t i s a l s o va l i d i f combine was f a l s e f o r aggregat i on !
SET @cstart=@acount⇤@rcount⇤LOG2(c id) ;# i s in t q s t a r t i n c l +1;
#id o f f s e t mu l t i p l i c a t o r bec o f agg
SET ac = 0 ;SELECT cid , @cstart ;

OPEN acur ;
agg loop : LOOP
FETCH acur INTO agg ;
IF done THEN

SET done = FALSE;
LEAVE agg loop ;

END IF ;

78

APPENDIX

SET @cstart=@cstart+@rcount⇤ac ;
SET qc=1;
SET @tqend=0;

OPEN qcur ;
q loop : LOOP
FETCH qcur INTO src , sqor ig , sqecount , tqor ig , tqecount , tq s ta r t , tqend ;
IF done THEN

SET done = FALSE;
LEAVE q loop ;

END IF ;

SET s t a r t i d=@cstart+tq s t a r t ;
SET endid=@cstart+tqend ;

IF t eva l t ab IS NULL THEN
#perform s e l e c t i o n , combine , and i n s e r t in sm combi resu l t
CALL se l e c t comb ine (cid , agg , ac , src , qc , sqor ig , sqecount , tqor ig , tqecount ,

s t a r t i d , endid , eva l) ;
ELSE
SET @ath=be s t agg t (LOG2(c id)) ;
CALL combine (cid , agg , ac , src , qc , sqor ig , sqecount , tqor ig , tqecount , s t a r t i d ,

endid , eval , @ath) ;

END IF ;

SET qc = qc+1;
END LOOP;
CLOSE qcur ;
SET ac = ac+1;
END LOOP;
CLOSE acur ;

IF eva l THEN
CALL e v a l r e s u l t (’ sm combi result ’ , evaltab , true , f a l s e , t eva l t ab) ;
#r e s e t f o r next i t e r a t i o n
DELETE FROM ‘ sm combi result ‘ WHERE ‘ id ‘>0;

END IF ;
END LOOP;
CLOSE ccur ;
END

#CALL combine sm resu l t (f a l s e , ’ sm eval ’ , ’ sm eva l con f i g ’) ;

#eva l . s q l
#eva lua t e s (and s e l e c t s) a query matcher r e s u l t

d e l im i t e r
CREATE PROCEDURE c r e a t e t a b l e e v a l (tab VARCHAR(45))
BEGIN

CALL drop tab l e (tab) ;

SET @str = ’ (
‘ id ‘ i n t (11) NOT NULL AUTO INCREMENT,

79

APPENDIX

‘ matcherid ‘ sma l l i n t (6) NOT NULL,
‘ source id ‘ sma l l i n t (6) NOT NULL,
‘ aggid ‘ sma l l i n t (6) NOT NULL,
‘ aggthresho ld ‘ f l o a t (4 , 3) NOT NULL,
‘ thresho ld ‘ f l o a t (4 , 3) NOT NULL,
‘ pr ‘ f l o a t (4 , 3) NOT NULL,
‘ re ‘ f l o a t (4 , 3) NOT NULL,
‘ fm ‘ f l o a t (4 , 3) NOT NULL,
‘pr@3 ‘ f l o a t (4 , 3) NOT NULL,
‘pr@5 ‘ f l o a t (4 , 3) NOT NULL,
‘ pr@10 ‘ f l o a t (4 , 3) NOT NULL,
‘ pr@15 ‘ f l o a t (4 , 3) NOT NULL,
‘mae@3 ‘ f l o a t (4 , 3) NOT NULL,
‘mae@5 ‘ f l o a t (4 , 3) NOT NULL,
‘mae@10 ‘ f l o a t (4 , 3) NOT NULL,
‘mae@15 ‘ f l o a t (4 , 3) NOT NULL,
‘ndpm@3‘ f l o a t (4 , 3) NOT NULL,
‘ndpm@5‘ f l o a t (4 , 3) NOT NULL,
‘ndpm@10 ‘ f l o a t (4 , 3) NOT NULL,
‘ndpm@15 ‘ f l o a t (4 , 3) NOT NULL,
PRIMARY KEY (‘ id ‘)
) ’ ;

SET @str = CONCAT(’CREATE TABLE ’ , tab , @str) ;

PREPARE stmt FROM @str ;
EXECUTE stmt ;
DEALLOCATE PREPARE stmt ;

END

de l im i t e r
CREATE PROCEDURE cr ea t e v i ew go ld (s r c i n t)
BEGIN
SET @s = s r c ;#workaround s i n c e view de f does not a l low f o r v a r i a b l e s

CREATE OR REPLACE VIEW ‘ gold ‘ AS
SELECT ⇤ FROM ‘ goldstandard ‘ WHERE ‘ source id ‘= gv s r c () ;

END

de l im i t e r
CREATE FUNCTION gv s r c ()
RETURNS in t
BEGIN

RETURN @s ;
END

de l im i t e r
CREATE FUNCTION eva l tmp fa s t (t f l o a t)
RETURNS varchar (60)
NOT DETERMINISTIC
BEGIN
DECLARE pr1 f l o a t (5 , 4) DEFAULT 0 ;
DECLARE re1 f l o a t (5 , 4) DEFAULT 0 ;

80

APPENDIX

DECLARE fm1 f l o a t (5 , 4) DEFAULT 0 ;
DECLARE pr3 f l o a t (5 , 4) DEFAULT 0 ;
DECLARE pr5 f l o a t (5 , 4) DEFAULT 0 ;
DECLARE pr10 f l o a t (5 , 4) DEFAULT 0 ;
DECLARE pr15 f l o a t (5 , 4) DEFAULT 0 ;

SET @t := t , @g=0.5 , @pr :=0 ,@re :=0 ,@fm:=0;

SET @ := (SELECT 0 FROM (
SELECT @pr:=AVG(pr2) ,
@re:=AVG(re2) ,
@fm := AVG(2⇤ (pr2⇤ re2 /(pr2+re2))) ,

@pr3:=AVG(‘ pr@3 ‘) ,#we need no nu l l check s i n c e denominator i s k
@pr5:=AVG(‘ pr@5 ‘) ,
@pr10:=AVG(‘ pr@10 ‘) ,
@pr15:=AVG(‘ pr@15 ‘)
FROM (SELECT ⇤ ,
IF (pr IS NULL, 0 , pr) pr2 ,
IF (re IS NULL, 1 , re) re2#the 1 i s c o r r e c t s i n c e we do a r i gh t j o i n with

gold

FROM (SELECT ‘ sqid ‘ ,
SUM(truepos) /SUM(pos) AS pr ,
SUM(IF (rank<=3,truepos , 0)) /3 AS ‘pr@3 ‘ ,
SUM(IF (rank<=5,truepos , 0)) /5 AS ‘pr@5 ‘ ,
SUM(IF (rank<=10, truepos , 0)) /10 AS ‘pr@10 ‘ ,
SUM(IF (rank<=15, truepos , 0)) /15 AS ‘pr@15 ‘

#NO mae computable s i n c e we do not con s i d e r a l l in go ld but only pos . .
FROM (SELECT ‘ sqid ‘ ,

pos ,
IF (g . ‘ s im i l a r i t y ‘ IS NULL, 0 , pos) AS truepos ,
r . rank

FROM (SELECT ⇤ , IF (‘ s im i l a r i t y ‘>0 AND ‘ s im i l a r i t y ‘ >= @t , 1 , 0) AS pos
FROM ‘tmp ‘) r

LEFT JOIN (SELECT ⇤ FROM ‘ gold ‘ WHERE ‘ s im i l a r i t y ‘ >= @g) g
USING (‘ source id ‘ , ‘ sq id ‘ , ‘ tq id ‘))
GROUP BY ‘ sqid ‘) prs
#we might not have r e c a l l v a l s f o r a l l
LEFT JOIN
(SELECT ‘ sqid ‘ ,
SUM(CASE WHEN p . ‘ s im i l a r i t y ‘ IS NULL THEN 0 ELSE 1 END)/COUNT(⇤) AS re
FROM (SELECT ⇤ FROM ‘tmp ‘ WHERE ‘ s im i l a r i t y ‘>0 AND ‘ s im i l a r i t y ‘>= @t) p
RIGHT JOIN (SELECT ⇤ FROM ‘ gold ‘ WHERE ‘ s im i l a r i t y ‘ >= @g) g
USING (‘ source id ‘ , ‘ sq id ‘ , ‘ tq id ‘)
GROUP BY ‘ sqid ‘) r e s
USING (‘ sqid ‘)
)
)) ;

IF @pr IS NULL THEN SET @pr = 0 ;
END IF ;
IF @re IS NULL THEN SET @re = 0 ;
END IF ;
IF @fm IS NULL THEN se t @fm = 0 ;

81

APPENDIX

END IF ;

SET pr1=@pr , re1=@re , fm1=@fm, pr3=@pr3 , pr5=@pr5 , pr10=@pr10 , pr15=@pr15 ;

RETURN CONCATWS(’ , ’ , pr1 , re1 , fm1 , pr3 , pr5 , pr10 , pr15) ;
END

#assumes only one s r c s e t in tmp
#and corre spond ing go ldstandard in gold
d e l im i t e r
CREATE FUNCTION eval tmp mae (k int , t f l o a t)
RETURNS f l o a t
NOT DETERMINISTIC
BEGIN

SET @k := k , @t := t ;

SET @mae :=
(SELECT AVG(mae)
FROM (SELECT ‘ sqid ‘ , AVG(ABS(r . sim g . ‘ s im i l a r i t y ‘)) AS mae
#f i n a l bes t k r e c s
FROM (SELECT ⇤ ,

#we c a l c u l a t e r egard ing s e l e c t e d sim . . .
CASE WHEN ‘ s im i l a r i t y ‘>= @t THEN ‘ s im i l a r i t y ‘ ELSE 0 END AS sim
FROM ‘tmp ‘
WHERE ‘ rank ‘ <= @k) r# r e c s

#jo in ed with gold
JOIN ‘ gold ‘ g
USING (‘ source id ‘ , ‘ sq id ‘ , ‘ tq id ‘)
GROUP BY ‘ sqid ‘)
) ;

IF @mae IS NULL THEN SET @mae=0;
END IF ;

RETURN @mae ;
END

#assumes only one s r c s e t in tmp
#and corre spond ing go ldstandard in gold
d e l im i t e r
CREATE FUNCTION eval tmp ndpm (k int , t f l o a t)
RETURNS f l o a t
NOT DETERMINISTIC
BEGIN
SET @k := k , @t := t ;

#mean ndpm
/⇤⇤⇤⇤/
SET @ndpm :=
(SELECT AVG(ndpm) FROM
(SELECT
SUM(
CASE WHEN g1 . sq id i s nu l l
THEN IF (g2 . sq id i s nu l l , 1 , 2) #l=r=0, l<r
ELSE CASE WHEN g2 . sq id i s nu l l THEN 0 #l>r

82

APPENDIX

ELSE IF (g1 . s im i l a r i t y<g2 . s im i l a r i t y , 2 , IF (g1 . s im i l a r i t y=g2 . s im i l a r i t y
, 1 , 0)) END END #AS nominator

) /(2⇤COUNT(⇤)) ndpm
FROM (
SELECT l . sqid , l . tq id AS l t , r . tq id AS r t
FROM (SELECT ⇤ , IF (‘ s im i l a r i t y ‘>=@t , ‘ s im i l a r i t y ‘ , 0) AS sim FROM ‘tmp ‘

WHERE rank<=@k) l
JOIN (SELECT ⇤ , IF (‘ s im i l a r i t y ‘>=@t , ‘ s im i l a r i t y ‘ , 0) AS sim FROM ‘tmp ‘

WHERE rank<=@k) r
USING (sq id)
WHERE l . tqid<>r . tq id AND l . sim>r . sim) s
LEFT JOIN (SELECT ⇤ FROM ‘ gold ‘ WHERE rank<=@k AND s im i l a r i t y >0) g1
ON s . sq id=g1 . sq id and l t=g1 . tq id
LEFT JOIN (SELECT ⇤ FROM ‘ gold ‘ WHERE rank<=@k AND s im i l a r i t y >0) g2
ON s . sq id=g2 . sq id AND rt=g2 . tq id
GROUP BY s . sq id)) ;

#should never be the case . . .
IF @ndpm IS NULL THEN SET @ndpm=0;
END IF ;

RETURN @ndpm;
END

#eva l tab the t ab l e where the eva l r e s u l t i s i n s e r t e d
d e l im i t e r
CREATE PROCEDURE eval tmp (eva l tab varchar (45) , evalparams varchar (45) , t

f l o a t (4 , 3))
BEGIN

SET @str = CONCAT(’INSERT INTO ’ , evaltab , ’ VALUES (0 ’) ;
SET @str = CONCATWS(’ , ’ , @str , evalparams , t , eva l tmp fa s t (t)) ;

SET @str = CONCATWS(’ , ’ , @str , eval tmp mae (3 , t) , eval tmp mae (5 , t) ,
eval tmp mae (10 , t) , eval tmp mae (15 , t)) ;

SET @str = CONCATWS(’ , ’ , @str , eval tmp ndpm (3 , t) , eval tmp ndpm (5 , t) ,
eval tmp ndpm (10 , t) , eval tmp ndpm (15 , t)) ;

SET @str = CONCAT(@str , ’) ; ’) ;

PREPARE stmt FROM @str ;
EXECUTE stmt ;
DEALLOCATE PREPARE stmt ;

END

#eva l tab the t ab l e where the eva l r e s u l t i s i n s e r t e d
d e l im i t e r
CREATE PROCEDURE se l e c t eva l tmp (eva l tab varchar (45) , evalparams varchar

(45))
BEGIN
DECLARE t f l o a t (4 , 3) DEFAULT 0 ;
DECLARE tmin f l o a t (4 , 3) DEFAULT 0 . 0 ;
DECLARE tmax f l o a t (4 , 3) DEFAULT 1 . 0 ;

#apply d i f f e r e n t s e l e c t i o n s

83

APPENDIX

SET t = tmin ;
t l o op : LOOP

IF t > tmax THEN LEAVE t l oop ;
END IF ;

CALL eval tmp (evaltab , evalparams , t) ;

SET t = t +0.10;
END LOOP;
END

#eva l tab the t ab l e to be c rea ted f o r eva l data
#r e s u l t t a b the t ab l e where the r e s u l t comes from
de l im i t e r
CREATE PROCEDURE e v a l r e s u l t (r e s u l t t a b varchar (45) , eva l tab varchar (45) ,
issm boolean , makeevaltab boolean , t eva l t ab varchar (45))
BEGIN
DECLARE mid i n t DEFAULT 0 ;
DECLARE agg i n t DEFAULT 0 ;
DECLARE agt f l o a t (4 , 3) DEFAULT 0 ;
DECLARE s r c i n t DEFAULT 0 ;
DECLARE s t a r t i d i n t DEFAULT 0 ;
DECLARE endid i n t DEFAULT 0 ;
#c o l s the c o l name o f the matcher and those o f one other param
#which should be used f o r d i s c e r n i n g the r e s u l t
#f o r grouping . i n s e r t \ ’\ ’ as dummy s t r i n g)
#i f f o r c o l s empty s t r i n g i n s e r t here only the id column ;
DECLARE co l s varchar (60) DEFAULT ’ ’ ;
DECLARE grouping varchar (60) DEFAULT ’ ’ ;

DECLARE done i n t DEFAULT FALSE;
DECLARE rcur CURSOR FOR (SELECT ⇤ FROM tmp cursor view) ;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

#a view to get the i d s to i t e r a t e over the r e s u l t s
#c r ea t e the view f o r the cur so r dynamical ly
IF issm THEN
SET co l s = ’ ‘ combiid ‘ , ‘ aggid ‘ , ‘ aggthresho ld ‘ ’ ,

grouping= ’ ‘ combiid ‘ , ‘ aggid ‘ , ‘ aggthresho ld ‘ ’ ;
ELSE SET co l s = ’ ‘matcherid ‘ , 1 , 0 ’ , grouping= ’ ‘matcherid ‘ ’ ;
END IF ;

SET @str = ’CREATE OR REPLACE VIEW tmp cursor view as SELECT ’ ;
SET @str = CONCAT(@str , co l s , ’ , ‘ source id ‘ ,MIN(id) ,MAX(id) FROM ’ ,

r e su l t t ab , ’ GROUP BY ’ , grouping , ’ , ‘ source id ‘ ’) ;

PREPARE stmt FROM @str ;
EXECUTE stmt ;
DEALLOCATE PREPARE stmt ;

#to record the r e s u l t o f one matcher temporar i l y
CALL c r ea t e t ab l e qq s im (’ tmp ’) ;

#to record the eva l r e s u l t s /⇤⇤⇤/

84

APPENDIX

IF makeevaltab THEN
CALL c r e a t e t a b l e e v a l (eva l tab) ;
END IF ;

SET @cursrc = 1 ;
OPEN rcur ;
r e s u l t l o o p : LOOP
FETCH rcur INTO mid , agg , agt , s rc , s t a r t i d , endid ;
IF done THEN LEAVE r e s u l t l o o p ;
END IF ;

IF @cursrc<>s r c THEN
CALL cr ea t e v i ew go ld (s r c) ;
SET @cursrc=s r c ;
END IF ;

#r e s e t t ab l e tmp
DELETE FROM ‘tmp ‘ WHERE ‘ id ‘>0;
#get the r e s u l t o f the matcher/combi
CALL i n i t t a b l e q q s im (’ tmp ’ , r e su l t t ab , s t a r t i d , endid , issm) ;

IF t eva l t ab IS NULL THEN
CALL se l e c t eva l tmp (evaltab , CONCATWS(’ , ’ , mid , src , agg , agt)) ;
ELSE
Set @tx=0;
CALL be s t t (mid , agt , t eva l tab , @tx) ;
CALL eval tmp (evaltab , CONCATWS(’ , ’ , mid , src , agg , agt) , @tx) ;
END IF ;
END LOOP;
CLOSE rcur ;

DROP VIEW tmp cursor view ;
END

#CALL e v a l r e s u l t (’ r e su l tdb . r e su l t ’ , ’ eval3 ’ , f a l s e , true , ’ ’)

85

B. List of Figures

2.1. Overview of measurements . 9

3.1. View of the remix workspace . 13
3.2. The remix report model . 14

4.1. The queries of a query log, shown below left, coalesced in a DAG by merging
common query parts; taken from [51] . 24

4.2. Criteria for classifying query matching approaches 27

5.1. The query recommendation procedure . 33
5.2. The schemas for the two example queries q

orig

and q1, shown below 41

6.1. Screenshot of the survey application . 52
6.2. The compositional structure of the survey application 52
6.3. The main parts of the architecture of the system 56
6.4. The dependence of the MAE from the combination threshold for the Name

Matcher . 59
6.5. The influence of the Threshold selection for the Name Matcher using di↵erent

thresholds . 60
6.6. The evaluation of the individual schema matchers regarding their usage accuracy 60
6.7. The evaluation of the query matchers regarding their usage accuracy 61
6.8. The evaluation of the query matchers regarding their over-all matching perfor-

mance . 62
6.9. The matching performance of the query matchers regarding the SDSS data set 62
6.10. The evaluation of the query matchers regarding their scalability 63
6.11. The evaluation of the query matchers regarding their rating (left) and ranking

accuracy (right) . 64

87

C. Bibliography

[1] Apache lucene. http://lucene.apache.org/.

[2] Apache tomcat. http://tomcat.apache.org/.

[3] Aqua data studio 8.0. 5.9.5 auto completion. http://www.aquafold.com/.

[4] Business objects. http://www.sap.com/solutions/sapbusinessobjects/large/business-
intelligence/index.epx.

[5] Cognos software. http://cognos.com/.

[6] Databasespy sql editor. e�ciently edit complicated sql queries.
http://www.altova.com/databasespy.html.

[7] Eclipse modeling framework project (emf). http://www.eclipse.org/modeling/emf/.

[8] Gene ontology. http://www.geneontology.org/.

[9] Glossary of data mining terms. olap. http://webdocs.cs.ualberta.ca/ zaiane/courses/cm-
put690/glossary.html.

[10] Iso/iec 9075-part 1-4,9-11,13, and 14. information technology – database languages – sql.

[11] Junit. http://www.junit.org/.

[12] Lucene 2.9.0 api. - class similarity.

[13] Mysql. http://www.mysql.com/.

[14] Sloan digital sky survey. http://www.sdss.org/dr8/.

[15] Tpc benchmarks. http://www.tpc.org/information/benchmarks.asp.

[16] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On, N. Polyzotis,
and J. S. V. Varman. Sql querie recommendations. Proc. VLDB Endow., 3:1597–1600,
September 2010.

[17] J. Akbarnejad, M. Eirinaki, S. Koshy, D. On, and N. Polyzotis. Sql querie recommenda-
tions: a query fragment-based approach. In 4th InternationalWorkshop on Personalized
Access, Profile Management, and Context Awareness in Databases (PersDB ’10), 2010.

[18] M. Barile. Taxicab metric. from mathworld – a wolfram web resource, created by e. w.
weisstein. http://mathworld.wolfram.com/taxicabmetric.html.

[19] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema matching, ten years later.
volume 4, pages 695–701, 2011.

[20] P. Raghavan C. D. Manning and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

89

BIBLIOGRAPHY

[21] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query systems for databases:
A survey. Journal of Visual Languages and Computing, 8:215–260, 1997.

[22] G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, N. Polyzotis, and J. S. V. Varman.
The querie system for personalized query recommendations. IEEE Data Eng. Bull.,
34(2):55–60, 2011.

[23] W. W. Chu and G. Zhang. Associative query answering via query feature similarity. In
Proc. IIS. IEEE Press, 1997.

[24] S. Cohen, W. Nutt, and Y. Sagiv. Deciding equivalences among conjunctive aggregate
queries. J. ACM, 54, April 2007.

[25] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of string distance
metrics for name-matching a comparison of string distance metrics for name-matching
tasks. In IIWeb, 2003.

[26] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan. Semantic data caching
and replacement. In VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 330–341. Morgan
Kaufmann, 1996.

[27] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton. Caching multidimen-
sional queries using chunks. In Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, SIGMOD ’98, pages 259–270, New York, NY, USA,
1998. ACM.

[28] H.-H. Do. Schema Matching and Mapping-based Data Integration. PhD thesis, University
of Leipzig, 8 2005.

[29] H.-H. Do and E. Rahm. Coma: a system for flexible combination of schema matching
approaches. In Proceedings of the 28th international conference on Very Large Data
Bases. VLDB Endowment, 2002.

[30] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for web
services. In Proceedings of the 30th international conference on Very large data bases,
volume 30 of VLDB ’04, pages 372–383. VLDB Endowment, 2004.

[31] M. Dumas, L. Garcia-banuelos, and R. Dijkman. Similarity search of business process
models. IEEE Data Eng. Bull., 32(3):23–28, 2009.

[32] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, 2007.

[33] S. Finkelstein. Common expression analysis in database applications. In Proceedings of
the 1982 ACM SIGMOD international conference on Management of data, SIGMOD ’82,
pages 235–245, New York, NY, USA, 1982. ACM.

[34] T. Gaasterland. Cooperative answering through controlled query relaxation. IEEE Expert:
Intelligent Systems and Their Applications, 12:48–59, September 1997.

[35] A. Ghosh, J. Parikh, V. S. Sengar, and J. R. Haritsa. Plan selection based on query
clustering. In Proceedings of the 28th international conference on Very Large Data Bases,
VLDB ’02, pages 179–190. VLDB Endowment, 2002.

90

BIBLIOGRAPHY

[36] A. Giacometti, P. Marcel, and E. Negre. A framework for recommending olap queries. In
Proceedings of the ACM 11th international workshop on Data warehousing and OLAP,
2008.

[37] A. Giacometti, P. Marcel, and E. Negre. Recommending multidimensional queries. In
DaWaK, pages 453–466, 2009.

[38] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query recommendations for olap
discovery-driven analysis. IJDWM, 7(2):1–25, 2011.

[39] A. Giordani and A. Moschitti. Semantic mapping between natural language questions
and sql queries via syntactic pairing. In Natural Language Processing and Information
Systems, volume 5723 of Lecture Notes in Computer Science, pages 207–221. Springer
Berlin / Heidelberg, 2010.

[40] R. D. Gopal and R. Ramesh. The query clustering problem: A set partitioning approach.
IEEE Trans. on Knowl. and Data Eng., 7:885–899, 1995.

[41] M. Thiele Gunnar Schröder G. Schröder and W. Lehner. Setting goals and choosing metrics
for recommender setting goals and choosing metrics for recommender system evaluations.
In the Proceedings of the Workshop on User-Centric Evaluation of Recommender Systems
and Their Interface (UCERSTI), 5th ACM Recommender Systems conference (RecSys
2010), 2011.

[42] S. Guo, W. Sun, and M. A. Weiss. Solving satisfiability and implication problems in
database systems. ACM Trans. Database Syst., 21:270–293, June 1996.

[43] A. Halevy. Answering queries using views: A survey. The VLDB Journal, 10:270–294,
December 2001.

[44] R. W. Hamming. Error detecting and error correcting codes. Bell Syst. Tech. J, 1950.

[45] D. Harman, E. Fox, R. Baeza-Yates, and W. Lee. Inverted files. In Information Retrieval:
Algorithms and Data Structures, chapter 3, pages 28–43. Prentice-Hall, 1992.

[46] F. Hausdor↵. Grundzüge der Mengenlehre, pages 32–33. Veit & Comp., Leipzig, 1914.

[47] Y. E. Ioannidis and S. D. Viglas. Conversational querying. Information Systems, 31(1):33
– 56, 2006.

[48] H. Jerbi, F. Ravat, O. Teste, and G. Zurfluh. Preference-based recommendations for olap
analysis. In Proceedings of the 11th International Conference on Data Warehousing and
Knowledge Discovery, DaWaK ’09, pages 467–478, Berlin, Heidelberg, 2009. Springer-
Verlag.

[49] M. Drosou K. Stefanidis and E. Pitoura. “you may also like” results in relational databases.
In VLDB, 2009.

[50] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and D. Suciu. A case for a
collaborative query management system. In CIDR, 2009.

[51] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: context-aware
autocompletion for sql. volume 4, pages 22–33. VLDB Endowment, October 2010.

91

BIBLIOGRAPHY

[52] N. Khoussainova, Y. Kwon, W.-T. Liao, M. Balazinska, W. Gatterbauer, and D. Suciu.
Session-based browsing for more e↵ective query reuse. In Proceedings of the 23rd interna-
tional conference on Scientific and statistical database management, SSDBM’11, pages
583–585, Berlin, Heidelberg, 2011. Springer-Verlag.

[53] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing join and selection queries. In
VLDB, pages 199–210, 2006.

[54] P. Koutris and E. Soroush. A machine learning approach to mapping natural language
to sql. Technical report, University of Washington (CSE department), 2010.

[55] R. A. Olshen L. Breiman, J. H. Friedman and C. J. Stone. Classification and regression
trees. Wadsworth & Brooks/Cole Advanced Books & Software, 1984.

[56] G. Li, J. Fan, H. Wu, J. Wang, and J. Feng. Dbease: Making databases user-friendly
and easily accessible. In CIDR, pages 45–56, 2011.

[57] G. Li, J. Feng, X. Zhou, and J. Wang. Providing built-in keyword search capabilities in
rdbms. The VLDB Journal, 20(1):1–19, February 2011.

[58] A. Senart M. Seguran and D. Trastour. remix : A semantic mashup application.
META4eSociety 2012, 2012.

[59] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid. In
Proceedings of the 27th International Conference on Very Large Data Bases, 2001.

[60] P. Marcel. Query personalisation and recommendation in data warehouse: anoverview.
2011.

[61] P. Marcel and E. Negre. A survey of query recommendation techniques for data warehouse
exploration. In 7èmes journées francophones sur les Entrepôts de Données et l’Analyse
en ligne (EDA 2011), Clermont-Ferrand, volume B-7 of RNTI, pages 119–134, Paris,
Juin 2011. Hermann.

[62] K. Mershad and H. Artail. Codisc: Collaborative and distributed semantic caching
for maximizing cache e↵ectiveness in wireless networks. J. Parallel Distrib. Comput.,
71:495–511, March 2011.

[63] T. Millstein, A. Halevy, and M. Friedman. Query containment for data integration
systems. Journal of Computer and System Sciences, 66(1):20 – 39, 2003.

[64] C. Monz and M. de RijkeSpring. Inverted index construction. introduction to information
retrieval, 2002.

[65] N. Nihalani, S. Silakari, and M. Motwani. Natural language interface for database-a brief
review. International Journal of Computer Science Issues, 8:600–608, 2011.

[66] N. Ohsugi, A. Monden, and K. Matsumoto. A recommendation system for software func-
tion discovery. In Proceedings of the Ninth Asia-Pacific Software Engineering Conference,
2002.

[67] J. Park and S. Lee. Keyword search in relational databases. Knowledge and Information
Systems, February 2010.

[68] E. Peukert, J. Eberius, and E. Rahm. Amc - a framework for modelling and comparing
matching systems as matching processes. In Proc. Int. Conf. on Data Engineering, 2011.

92

BIBLIOGRAPHY

[69] E. Peukert, S. Maßmann, and K. König. Comparing similarity combination methods for
schema matching. In GI Jahrestagung (1), 2010.

[70] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334–350, 2001.

[71] Q. Ren, M. H. Dunham, and V. Kumar. Semantic caching and query processing. IEEE
Trans. on Knowl. and Data Eng., 15:192–210, January 2003.

[72] D. J. Rosenkrantz and H. B. Hunt III. Processing conjunctive predicates and queries. In
Proceedings of the sixth international conference on Very Large Data Bases - Volume 6,
pages 64–72. VLDB Endowment, 1980.

[73] N. Roussopoulos, C. M. Chen, S. Kelley, A. Delis, and Y. Papakonstantinou. The adms
project: Views “r” us, 1995.

[74] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. E�cient and extensible algorithms
for multi query optimization. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, SIGMOD ’00, pages 249–260, New York, NY, USA,
2000. ACM.

[75] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, November 1975.

[76] C. Sammut and G. I. Webb, editors. Encyclopedia of Machine Learning. Springer, 2010.

[77] C. Sapia. On modeling and predicting query behavior in olap systems. In DMDW, page 2,
1999.

[78] C. Sapia. Promise: Predicting query behavior to enable predictive caching strategies for
olap systems. In DaWaK, pages 224–233, 2000.

[79] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13:23–52, March
1988.

[80] G. Shani and A. Gunawardana. Evaluating recommendation systems. In Recommender
Systems Handbook, pages 257–297. 2011.

[81] A. Singhal. Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 2001.

[82] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, 2nd edition, 2008.

[83] A. Vancea and B. Stiller. Coopsc: A cooperative database caching architecture. In
WETICE, pages 223–228, 2010.

[84] S. Wartik. Chapter 12: Boolean Operations. Information Retrieval Data Structures &
Algorithms. Prentice-Hall, 1992.

[85] E. W. Weisstein. Distance. from mathworld – a wolfram web resource.
http://mathworld.wolfram.com/distance.html.

[86] P.-A. Larson Y. Silva and J. Zhou. Exploiting common subexpressions for cloud query
processing. In ICDE, 2012.

[87] X. Yang, C. M. Procopiuc, and D. Srivastava. Recommending join queries via query log
analysis. In Proceedings of the 2009 IEEE International Conference on Data Engineering,
pages 964–975, Washington, DC, USA, 2009. IEEE Computer Society.

93

BIBLIOGRAPHY

[88] Y. Y. Yao. Measuring retrieval e↵ectiveness based on user preference of documents. J.
Am. Soc. Inf. Sci., 1995.

[89] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata. Answering complex
sql queries using automatic summary tables. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, SIGMOD ’00, pages 105–116, New
York, NY, USA, 2000. ACM.

[90] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search - The Metric Space
Approach, volume 32 of Advances in Database Systems. Kluwer, 2006.

[91] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner. E�cient exploitation of similar
subexpressions for query processing. In Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’07, pages 533–544, New York, NY,
USA, 2007. ACM.

94

CONFIRMATION

Confirmation

I confirm that I independently prepared the thesis and that I only used the references and
auxiliary means indicated in the thesis.

Dresden, August 31, 2012

95

	Task
	Abstract
	Introduction
	Motivation for Query Matching
	Scope of this Thesis

	Preliminaries
	Queries
	Similarity Search
	Index Search
	Calculating Similarity Values for Text

	Schema Matching
	Schema Matchers
	Similarity Values of Schema Matchers

	Measurements
	Usage Accuracy
	Rating Accuracy
	Ranking Accuracy

	Conclusion

	Problem Analysis and Definition
	Query Recommendation in remix
	The Query Matching Problem
	An Example
	Challenges in Query Matching

	Requirement Definition
	Problem Definition
	Query Matching
	Query Recommendation

	Conclusion

	Related Work
	Query Recommendation and Matching
	Query Recommendation
	Query Optimization
	Others

	Matching Techniques
	Similarity Search
	Schema Matching

	Discussion
	Classification
	Comparison

	Conclusion

	Query Matching – A Combined Approach
	Query Recommendation Approach
	The Combined Matcher
	The Feature Matcher
	The Schema Matcher
	Aggregation and Selection

	Conclusion

	Evaluation
	Empirical Study
	Data Set Alternatives
	Preparation
	Design and Implementation
	Results

	Overview
	Data Sets
	Experiment Design
	Architecture and Implementation
	Threats of Validity

	Results
	Configuration and Evaluation of Schema Matchers
	Evaluation of the Combined Matcher

	Summary and Discussion
	Summary
	Discussion

	Conclusion And Future Work
	Conclusion
	Future Work

	Appendix
	List of Figures
	Bibliography
	Confirmation

