Exercise 3.1
(a) Devise a default theory $T = (W, D)$ that has three extensions.
(b) Devise a set of additional defaults D' such that $T' = (W, D \cup D')$ has less extensions than T.
(c) Devise a set of additional facts W' such that $T'' = (W \cup W', D)$ has less extensions than T.

Exercise 3.2 Prove Theorem 3.13 (Consistency preservation), i.e. show that the following holds:
A default theory $T = (W, D)$ has an inconsistent extension iff W is inconsistent.

Exercise 3.3 Prove or refute the following claim:
Let E be an extension of the default theory $T = (W, D)$. Then E is also an extension of $T' = (W \cup W', D)$ for every subset W' of E.

Exercise 3.4 Give an example which demonstrates that expanding a set of normal defaults by adding normal defaults may increase the number of extensions.

Exercise 3.5 A class C is called representationally complete iff the following property is satisfied: For every default theory T there is a default theory T' in C such that T and T' have the same extensions. Show that the class of normal default theories in not representationally complete.

Hint: Consider a default theory T with two extensions E and F such that $E \cup F$ is consistent.